We consider a partially fastened membrane with many concentrated masses near the boundary. Masses have the diameter ; the density is outside the masses and , , in the masses. We assume that the distance between masses is and a is fixed. We obtain the leading terms of the asymptotic expansion of eigenvalues and eigenfunctions of the respective spectral problems for the Laplacian in such a domain.
Nous considérons une membrane partiellement attachée avec plusieurs masses concentrées prés de la frontière. Le diamètre des masses est ègal à ; la densité est d'ordre en dehors des masses et la densité des masses d'ordre , . Nous supposons que la distance entre les masses est d'ordre et que a est fixé. Nous obtenons les termes principaux du développement asymptotique des valeurs propres et des fonctions propres du Laplacian dans un domaine de ce type.
Accepted:
Published online:
Mots-clés : Vibrations, Homogénéisation, Petit paramètre, Valeur propre, Asymptotique
Gregory A. Chechkin 1
@article{CRMECA_2004__332_12_949_0, author = {Gregory A. Chechkin}, title = {On the vibration of a partially fastened membrane with many {\textquoteleft}light{\textquoteright} concentrated masses on the boundary}, journal = {Comptes Rendus. M\'ecanique}, pages = {949--954}, publisher = {Elsevier}, volume = {332}, number = {12}, year = {2004}, doi = {10.1016/j.crme.2004.08.002}, language = {en}, }
TY - JOUR AU - Gregory A. Chechkin TI - On the vibration of a partially fastened membrane with many ‘light’ concentrated masses on the boundary JO - Comptes Rendus. Mécanique PY - 2004 SP - 949 EP - 954 VL - 332 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2004.08.002 LA - en ID - CRMECA_2004__332_12_949_0 ER -
Gregory A. Chechkin. On the vibration of a partially fastened membrane with many ‘light’ concentrated masses on the boundary. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 949-954. doi : 10.1016/j.crme.2004.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.08.002/
[1] On some differential equations of mathematical physics, having applications in technical questions, T. Nikolay Maritime Academy, Volume 2 (1913), pp. 325-348
[2] Perturbation of eigenvalues in thermoelasticity and vibration of system with concentrated masses, Trends Appl. Pure Math. Mech., Lecture Notes in Phys., vol. 195, Springer, Berlin, 1984, pp. 346-368
[3] Homogenization problems in elasticity. Spectrum of singularly perturbed operators, Nonclassical Continuum Mechanics, Lecture Notes Ser., vol. 122, Cambridge University Press, 1987, pp. 188-205
[4] Natural frequencies of a fastened plate with additional mass, Uspekhi Mat. Nauk, Volume 263 (1988) no. 5, pp. 185-186 (English translation in Russian Math. Surveys, 43, 5, 1988, pp. 227-228)
[5] Concentrated masses problems for a spatial elastic body, C. R. Acad. Sci. Paris, Ser. I, Volume 316 (1993) no. 6, pp. 627-632
[6] Vibration de systèmes elastiques avec masses concentrées, Rend. Sem. Mat. Univ. Politec. Torino, Volume 42 (1984) no. 3, pp. 43-63
[7] Asymptotic behavior of the vibrations of a body having many concentrated masses near the boundary, C. R. Acad. Sci. Paris, Ser. II, Volume 314 (1992), pp. 13-18
[8] On vibration of membrane with concentrated masses, Bull. Sci. Math., Volume 115 (1991) no. 1, pp. 1-27
[9] G.A. Chechkin, M.E. Pérez, E.I. Yablokova, On eigenvibrations of a body with many “light” concentrated masses located nonperiodically along the boundary, Preprint of Universidad de Cantabria, Num. 1/2002, Santander, Abril 2002, 31 p.; Indiana Univ. Math. J., in press
[10] Splitting a multiple eigenvalue in the problem on concentrated masses, Russian Math. Surveys, Volume 59 (2004) no. 4, pp. 205-206 (Translated from Uspekhi Mat. Nauk, 2004)
[11] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Transl. Math. Monogr., vol. 102, American Mathematical Society, Providence, RI, 1992
[12] Asymptotics of the minimum eigenvalue for a circle with fast oscillating boundary conditions, C. R. Acad. Sci. Paris, Ser. I., Volume 323 (1996) no. 3, pp. 319-323
[13] On the eigenvalue asymptotics for periodically clamped membranes, Algebra i Anal., Volume 10 (1998) no. 1, pp. 3-19 (English translation in St. Petersburg Math. J., 10, 1, 1999, pp. 1-14)
[14] Spectral properties of an elliptic problem with rapidly oscillating boundary conditions, Novosibirsk, 1989, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk (1989), pp. 197-200 (in Russian)
[15] Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian under singular perturbation of the boundary condition, Mat. Zametki, Volume 52 (1992) no. 4, pp. 42-55 (English translation in Math. Notes, 52, 4, 1992, pp. 1020-1029)
Cited by Sources:
Comments - Policy