Comptes Rendus
New asymptotic effects for the spectrum of problems on concentrated masses near the boundary
[Nouveaux effets asymptotiques pour le spectre des problèmes avec des masses concentrées près de la frontière]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 8, pp. 585-590.

The Dirichlet and Neumann spectral problems for the Laplace operator in a bounded domain ΩR2 are considered. We assume that Ω has a piecewise smooth boundary ∂Ω and the density function is equal to 1+εmχε in Ω, where ε>0 is a small parameter, mR and χε is the characteristic function of the union ωε0ωεJ1 of small sets (the concentrated masses) distributed periodically near a straight segment ΓΩ. We describe asymptotics for the eigenelements of both problems as ε0.

On considére des problèmes spectraux pour l'opérateur de Laplace dans un domaine bornée ΩR2 avec des conditions de Dirichlet et Neumann respectivement sur la frontière. On suppose que la frontière ∂Ω est régulière par morceaux tandis que la fonction densité prend la valeur 1+εmχε dans Ω, oú ε>0 est un petit paramètre, mR, et χε est la fonction caractéristique de l'union des petites ensembles ωε0ωεJ1 (les masses concentrés), qui sont répartis périodiquement prés d'un segment droite Γ de la frontière, ΓΩ. Nous décrivons le comportement asymptotique des valeurs propres de ces deux problèmes lorsque ε0.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2009.07.002
Keywords: Boundary homogenization, Spectral analysis, Concentrated masses, Asymptotic expansions
Mots-clés : Homogénéisation des frontières, Analyse spectrale, Masses concentrées, Développements asymptotiques

Sergey A. Nazarov 1 ; Eugenia Pérez 2

1 Institute of Mechanical Engineering Problems, V.O., Bol'shoi pr., 61, 199178, St.-Petersburg, Russia
2 Departamento de Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Avenida de las Castros s/n, 39005 Santander, Spain
@article{CRMECA_2009__337_8_585_0,
     author = {Sergey A. Nazarov and Eugenia P\'erez},
     title = {New asymptotic effects for the spectrum of problems on concentrated masses near the boundary},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {585--590},
     publisher = {Elsevier},
     volume = {337},
     number = {8},
     year = {2009},
     doi = {10.1016/j.crme.2009.07.002},
     language = {en},
}
TY  - JOUR
AU  - Sergey A. Nazarov
AU  - Eugenia Pérez
TI  - New asymptotic effects for the spectrum of problems on concentrated masses near the boundary
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 585
EP  - 590
VL  - 337
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2009.07.002
LA  - en
ID  - CRMECA_2009__337_8_585_0
ER  - 
%0 Journal Article
%A Sergey A. Nazarov
%A Eugenia Pérez
%T New asymptotic effects for the spectrum of problems on concentrated masses near the boundary
%J Comptes Rendus. Mécanique
%D 2009
%P 585-590
%V 337
%N 8
%I Elsevier
%R 10.1016/j.crme.2009.07.002
%G en
%F CRMECA_2009__337_8_585_0
Sergey A. Nazarov; Eugenia Pérez. New asymptotic effects for the spectrum of problems on concentrated masses near the boundary. Comptes Rendus. Mécanique, Volume 337 (2009) no. 8, pp. 585-590. doi : 10.1016/j.crme.2009.07.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.07.002/

[1] M. Lobo; E. Pérez Math. Models Methods Appl. Sci., 5 (1995) no. 5, pp. 565-585

[2] Y. Golovaty; D. Gómez; M. Lobo; E. Pérez Math. Models Methods Appl. Sci., 14 (2004), pp. 987-1034

[3] D. Gómez; M. Lobo; S.A. Nazarov; E. Pérez J. Math. Pures Appl., 85 (2006), pp. 598-632

[4] D. Gómez; M. Lobo; S.A. Nazarov; E. Pérez J. Math. Pures Appl., 86 (2006), pp. 369-402

[5] O.A. Oleinik; A.S. Shamaev; G.A. Yosifian Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992

[6] M. Lobo; E. Pérez C. R. Mecanique, 331 (2003), pp. 303-317

[7] E. Pérez Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 24, Gakkotosho, Tokyo, 2006, pp. 311-323

[8] E. Pérez Discrete Cont. Dyn. Syst. Ser. B, 7 (2007) no. 4, pp. 859-883

[9] S.A. Nazarov, E. Pérez, Higher order terms of asymptotics for eigenelements in vibrating systems with many concentrated masses, in preparation

[10] M. Maz'ya; S.A. Nazarov; B.A. Plamenevskij Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. I and II, Birkhäuser Verlag, Basel, 2000

[11] S.A. Nazarov; B.A. Plamenevskii Leningrad Math. J., 2 (1991), pp. 287-311

[12] G. Nguetseng; E. Sanchez-Palencia Local Effects in the Analysis of Structures, Stud. Appl. Mech., vol. 12, Elsevier, Amsterdam, 1985, pp. 55-74

[13] M. Lobo; E. Pérez Math. Models Methods Appl. Sci., 3 (1993) no. 2, pp. 249-273

[14] M. Lobo; E. Pérez Math. Methods Appl. Sci., 24 (2001) no. 1, pp. 59-80

[15] G.A. Chechkin C. R. Mecanique, 332 (2004), pp. 949-954

[16] G.A. Chechkin; E. Pérez; E.I. Yablokova Indiana Univ. Math. J., 54 (2005), pp. 321-348

[17] T. Mel'nyk Math. Models Methods Appl. Sci., 11 (2001) no. 6, pp. 1001-1027

[18] D. Leguillon; E. Sanchez-Palencia Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987

  • D. Gómez; S. A. Nazarov; M.-E. Pérez-Martínez Pointwise Fixation along the Edge of a Kirchhoff Plate, Journal of Mathematical Sciences, Volume 277 (2023) no. 4, p. 545 | DOI:10.1007/s10958-023-06862-8
  • Yuriy Golovaty Membranes with thin and heavy inclusions: Asymptotics of spectra, Asymptotic Analysis, Volume 130 (2022) no. 1-2, p. 23 | DOI:10.3233/asy-211743
  • A. G. Chechkina On the Behavior of the Spectrum of a Perturbed Steklov Boundary Value Problem with a Weak Singularity, Differential Equations, Volume 57 (2021) no. 10, p. 1382 | DOI:10.1134/s0012266121100128
  • Fedor L. Bakharev; M. Eugenia Pérez Spectral gaps for the Dirichlet‐Laplacian in a 3‐D waveguide periodically perturbed by a family of concentrated masses, Mathematische Nachrichten, Volume 291 (2018) no. 4, p. 556 | DOI:10.1002/mana.201600270
  • Sergei A. Nazarov; M. Eugenia Pérez On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary, Revista Matemática Complutense, Volume 31 (2018) no. 1, p. 1 | DOI:10.1007/s13163-017-0243-4
  • D. Gómez; S. A. Nazarov; M. E. Pérez Homogenization of Winkler–Steklov spectral conditions in three-dimensional linear elasticity, Zeitschrift für angewandte Mathematik und Physik, Volume 69 (2018) no. 2 | DOI:10.1007/s00033-018-0927-8
  • Giuseppe Cardone; Andrii Khrabustovskyi Neumann spectral problem in a domain with very corrugated boundary, Journal of Differential Equations, Volume 259 (2015) no. 6, p. 2333 | DOI:10.1016/j.jde.2015.03.031
  • G. A. Chechkin; T. A. Mel'nyk Spatial‐skin effect for eigenvibrations of a thick cascade junction with ‘heavy’ concentrated masses, Mathematical Methods in the Applied Sciences, Volume 37 (2014) no. 1, p. 56 | DOI:10.1002/mma.2785
  • Miguel Lobo; M. Eugenia Pérez Long time approximations for solutions of wave equations associated with the Steklov spectral homogenization problems, Mathematical Methods in the Applied Sciences (2009), p. n/a | DOI:10.1002/mma.1256

Cité par 9 documents. Sources : Crossref

The first author acknowledges the support by RFFI, grant 09-01-00759. The second author acknowledges the support by the Spanish MEC, MTM2005-07720. The work has also been partially supported by the MEC, SAB2005-0175.

Commentaires - Politique