[Nouveaux effets asymptotiques pour le spectre des problèmes avec des masses concentrées près de la frontière]
On considére des problèmes spectraux pour l'opérateur de Laplace dans un domaine bornée avec des conditions de Dirichlet et Neumann respectivement sur la frontière. On suppose que la frontière ∂Ω est régulière par morceaux tandis que la fonction densité prend la valeur dans Ω, oú est un petit paramètre, , et est la fonction caractéristique de l'union des petites ensembles (les masses concentrés), qui sont répartis périodiquement prés d'un segment droite Γ de la frontière, . Nous décrivons le comportement asymptotique des valeurs propres de ces deux problèmes lorsque .
The Dirichlet and Neumann spectral problems for the Laplace operator in a bounded domain are considered. We assume that Ω has a piecewise smooth boundary ∂Ω and the density function is equal to in Ω, where is a small parameter, and is the characteristic function of the union of small sets (the concentrated masses) distributed periodically near a straight segment . We describe asymptotics for the eigenelements of both problems as .
Accepté le :
Publié le :
Mot clés : Homogénéisation des frontières, Analyse spectrale, Masses concentrées, Développements asymptotiques
Sergey A. Nazarov 1 ; Eugenia Pérez 2
@article{CRMECA_2009__337_8_585_0, author = {Sergey A. Nazarov and Eugenia P\'erez}, title = {New asymptotic effects for the spectrum of problems on concentrated masses near the boundary}, journal = {Comptes Rendus. M\'ecanique}, pages = {585--590}, publisher = {Elsevier}, volume = {337}, number = {8}, year = {2009}, doi = {10.1016/j.crme.2009.07.002}, language = {en}, }
TY - JOUR AU - Sergey A. Nazarov AU - Eugenia Pérez TI - New asymptotic effects for the spectrum of problems on concentrated masses near the boundary JO - Comptes Rendus. Mécanique PY - 2009 SP - 585 EP - 590 VL - 337 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2009.07.002 LA - en ID - CRMECA_2009__337_8_585_0 ER -
Sergey A. Nazarov; Eugenia Pérez. New asymptotic effects for the spectrum of problems on concentrated masses near the boundary. Comptes Rendus. Mécanique, Volume 337 (2009) no. 8, pp. 585-590. doi : 10.1016/j.crme.2009.07.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.07.002/
[1] Math. Models Methods Appl. Sci., 5 (1995) no. 5, pp. 565-585
[2] Math. Models Methods Appl. Sci., 14 (2004), pp. 987-1034
[3] J. Math. Pures Appl., 85 (2006), pp. 598-632
[4] J. Math. Pures Appl., 86 (2006), pp. 369-402
[5] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992
[6] C. R. Mecanique, 331 (2003), pp. 303-317
[7] Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 24, Gakkotosho, Tokyo, 2006, pp. 311-323
[8] Discrete Cont. Dyn. Syst. Ser. B, 7 (2007) no. 4, pp. 859-883
[9] S.A. Nazarov, E. Pérez, Higher order terms of asymptotics for eigenelements in vibrating systems with many concentrated masses, in preparation
[10] Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. I and II, Birkhäuser Verlag, Basel, 2000
[11] Leningrad Math. J., 2 (1991), pp. 287-311
[12] Local Effects in the Analysis of Structures, Stud. Appl. Mech., vol. 12, Elsevier, Amsterdam, 1985, pp. 55-74
[13] Math. Models Methods Appl. Sci., 3 (1993) no. 2, pp. 249-273
[14] Math. Methods Appl. Sci., 24 (2001) no. 1, pp. 59-80
[15] C. R. Mecanique, 332 (2004), pp. 949-954
[16] Indiana Univ. Math. J., 54 (2005), pp. 321-348
[17] Math. Models Methods Appl. Sci., 11 (2001) no. 6, pp. 1001-1027
[18] Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987
Cité par Sources :
☆ The first author acknowledges the support by RFFI, grant 09-01-00759. The second author acknowledges the support by the Spanish MEC, MTM2005-07720. The work has also been partially supported by the MEC, SAB2005-0175.
Commentaires - Politique