A new approach is advocated to compute at a low cpu time cost the rigid-body motions of settling solid particles when inertial effects are negligible. In addition to the relevant boundary-integral equations, the numerical implementation and a few convincing benchmark tests we address two configurations of equivalent spheres and spheroids, i.e. that exhibit when isolated the same settling velocity.
On propose une approche originale pour déterminer le mouvement d'une assemblée de particules solides et de formes arbitraires soumise à l'action de la pesanteur dans l'approximation de Stokes. Outre les intégrales de frontière et la méthode numérique associées on présente quelques comparaisons et examine le cas de deux configurations de sphères et ellipsoides de révolution équivalents, c'est-à-dire dotés lorsqu'ils sont seuls de la même vitesse de sédimentation.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Sédimentation, Interactions, Équations de frontière
Antoine Sellier 1
@article{CRMECA_2004__332_12_987_0, author = {Antoine Sellier}, title = {On the slow gravity-driven migration of arbitrary clusters of small solid particles}, journal = {Comptes Rendus. M\'ecanique}, pages = {987--992}, publisher = {Elsevier}, volume = {332}, number = {12}, year = {2004}, doi = {10.1016/j.crme.2004.09.002}, language = {en}, }
Antoine Sellier. On the slow gravity-driven migration of arbitrary clusters of small solid particles. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 987-992. doi : 10.1016/j.crme.2004.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.002/
[1] The motion of two spheres in a viscous fluid, Proc. Roy. Soc. London A, Volume 111 (1926), pp. 110-116
[2] The slow motion of two identical arbitrarily oriented spheres through a viscous fluid, Chem. Engrg. Sci., Volume 21 (1966), pp. 1151-1170
[3] The hydrodynamic interaction of two unequal spheres moving under gravity through a quiescent fluid, J. Fluid Mech., Volume 65 (1974), pp. 417-437
[4] A strong-interaction theory for the motion of arbitrary three-dimensional clusters of spherical particles at low Reynolds number, J. Fluid Mech., Volume 197 (1988), pp. 1-37
[5] A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids, J. Fluid Mech., Volume 50 (1971), pp. 705-740
[6] Multipole expansion calculation of slow viscous flow about spheroids of different sizes, J. Fluid Mech., Volume 96 (1980), pp. 223-241
[7] Microhydrodynamics: Principles and Selected Applications, Butterworth, 1991
[8] Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973
[9] Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992
[10] Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, 1999
[11] Inertial effects on clusters of spheres falling in a viscous fluid, J. Fluid Mech., Volume 20 (1964), pp. 401-410
Cited by Sources:
Comments - Policy