Comptes Rendus
On the slow gravity-driven migration of arbitrary clusters of small solid particles
Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 987-992.

A new approach is advocated to compute at a low cpu time cost the rigid-body motions of settling solid particles when inertial effects are negligible. In addition to the relevant boundary-integral equations, the numerical implementation and a few convincing benchmark tests we address two configurations of equivalent spheres and spheroids, i.e. that exhibit when isolated the same settling velocity.

On propose une approche originale pour déterminer le mouvement d'une assemblée de particules solides et de formes arbitraires soumise à l'action de la pesanteur dans l'approximation de Stokes. Outre les intégrales de frontière et la méthode numérique associées on présente quelques comparaisons et examine le cas de deux configurations de sphères et ellipsoides de révolution équivalents, c'est-à-dire dotés lorsqu'ils sont seuls de la même vitesse de sédimentation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2004.09.002
Keywords: Fluid mechanics, Sedimentation, Particle–particle interactions, Boundary-integral
Mot clés : Mécanique des fluides, Sédimentation, Interactions, Équations de frontière

Antoine Sellier 1

1 LadHyX, École polytechnique, 91128 Palaiseau cedex, France
@article{CRMECA_2004__332_12_987_0,
     author = {Antoine Sellier},
     title = {On the slow gravity-driven migration of arbitrary clusters of small solid particles},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {987--992},
     publisher = {Elsevier},
     volume = {332},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crme.2004.09.002},
     language = {en},
}
TY  - JOUR
AU  - Antoine Sellier
TI  - On the slow gravity-driven migration of arbitrary clusters of small solid particles
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 987
EP  - 992
VL  - 332
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2004.09.002
LA  - en
ID  - CRMECA_2004__332_12_987_0
ER  - 
%0 Journal Article
%A Antoine Sellier
%T On the slow gravity-driven migration of arbitrary clusters of small solid particles
%J Comptes Rendus. Mécanique
%D 2004
%P 987-992
%V 332
%N 12
%I Elsevier
%R 10.1016/j.crme.2004.09.002
%G en
%F CRMECA_2004__332_12_987_0
Antoine Sellier. On the slow gravity-driven migration of arbitrary clusters of small solid particles. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 987-992. doi : 10.1016/j.crme.2004.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.002/

[1] M. Stimson; G.B. Jeffery The motion of two spheres in a viscous fluid, Proc. Roy. Soc. London A, Volume 111 (1926), pp. 110-116

[2] A.J. Goldman; R.G. Cox; H. Brenner The slow motion of two identical arbitrarily oriented spheres through a viscous fluid, Chem. Engrg. Sci., Volume 21 (1966), pp. 1151-1170

[3] E. Wacholder; N.F. Sather The hydrodynamic interaction of two unequal spheres moving under gravity through a quiescent fluid, J. Fluid Mech., Volume 65 (1974), pp. 417-437

[4] Q. Hassonjee; P. Ganatos; R. Pfeffer A strong-interaction theory for the motion of arbitrary three-dimensional clusters of spherical particles at low Reynolds number, J. Fluid Mech., Volume 197 (1988), pp. 1-37

[5] M.J. Gluckman; R. Pfeffer; R. Weinbaum A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids, J. Fluid Mech., Volume 50 (1971), pp. 705-740

[6] W.H. Liao; D.A. Krueger Multipole expansion calculation of slow viscous flow about spheroids of different sizes, J. Fluid Mech., Volume 96 (1980), pp. 223-241

[7] S. Kim; S.J. Karrila Microhydrodynamics: Principles and Selected Applications, Butterworth, 1991

[8] J. Happel; H. Brenner Low Reynolds Number Hydrodynamics, Martinus Nijhoff, 1973

[9] C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, 1992

[10] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, John Wiley & Sons, 1999

[11] F.P. Bretherton Inertial effects on clusters of spheres falling in a viscous fluid, J. Fluid Mech., Volume 20 (1964), pp. 401-410

Cited by Sources:

Comments - Policy