[Ecoulement effectif d'un liquide visqueux dans un tube hélicoïdal.]
On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par
We study the flow of a viscous fluid through a pipe with helical shape parameterized with
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Tube hélicoïdale, Équations de Navier–Stokes
Eduard Marušić-Paloka 1 ; Igor Pažanin 1
@article{CRMECA_2004__332_12_973_0, author = {Eduard Maru\v{s}i\'c-Paloka and Igor Pa\v{z}anin}, title = {Effective flow of a viscous liquid through a helical pipe}, journal = {Comptes Rendus. M\'ecanique}, pages = {973--978}, publisher = {Elsevier}, volume = {332}, number = {12}, year = {2004}, doi = {10.1016/j.crme.2004.09.005}, language = {en}, }
Eduard Marušić-Paloka; Igor Pažanin. Effective flow of a viscous liquid through a helical pipe. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 973-978. doi : 10.1016/j.crme.2004.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.005/
[1] Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure, Math. Models Methods Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378
[2] The effects of flexion and torsion for a fluid flow through a curved pipe, Appl. Math. Optim., Volume 44 (2001), pp. 245-272
[3] Asymptotic expansion of the solution of the Navier–Stokes equation in a tube structure, C. R. Acad. Sci. Paris, Ser. IIb, Volume 326 (1998), pp. 867-872
[4] Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids, Volume 22 (1996), pp. 325-352
[5] Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid, Asymptotic Analysis, Volume 33 (2003) no. 1, pp. 51-66
[6] Incompressible newtonian flow through thin pipes, Dubrovnik 2001, Kluwer (2003), pp. 123-142
- Modelling of the porous medium flow with pressure-dependent viscosity and drag coefficient, Zeitschrift für Naturforschung A, Volume 78 (2023) no. 9, p. 823 | DOI:10.1515/zna-2023-0109
- Effects of boundary roughness and inertia on the fluid flow through a corrugated pipe and the formula for the Darcy–Weisbach friction coefficient, International Journal of Engineering Science, Volume 152 (2020), p. 103293 | DOI:10.1016/j.ijengsci.2020.103293
- Pressure-driven flow in a thin pipe with rough boundary, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 4 | DOI:10.1007/s00033-020-01355-z
- On the Viscous Flow Through a Long Pipe With Non-Constant Pressure Boundary Condition, Zeitschrift für Naturforschung A, Volume 73 (2018) no. 7, p. 639 | DOI:10.1515/zna-2018-0129
- Non-isothermal fluid flow through a thin pipe with cooling, Applicable Analysis, Volume 88 (2009) no. 4, p. 495 | DOI:10.1080/00036810902889542
- On the Solvability of a Problem of Stationary Fluid Flow in a Helical Pipe, Mathematical Problems in Engineering, Volume 2009 (2009) no. 1 | DOI:10.1155/2009/957061
- Modelling of heat transfer in a laminar flow through a helical pipe, Mathematical and Computer Modelling, Volume 50 (2009) no. 11-12, p. 1571 | DOI:10.1016/j.mcm.2009.09.006
- A Review on the Potential Applications of Curved Geometries in Process Industry, Industrial Engineering Chemistry Research, Volume 47 (2008) no. 10, p. 3291 | DOI:10.1021/ie701760h
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier