Comptes Rendus
Effective flow of a viscous liquid through a helical pipe
Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 973-978.

We study the flow of a viscous fluid through a pipe with helical shape parameterized with rɛ(x1)=(x1,acosx1ɛ,asinx1ɛ), where the small parameter ɛ stands for the distance between two coils of the helix. The pipe has small cross-section of size ɛ. Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter ɛ that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe.

On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par rɛ(x1)=(x1,acosx1ɛ,asinx1ɛ), où ɛ est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à ɛ. A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre ɛ on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2004.09.005
Keywords: Fluid mechanics, Helical pipe, Navier–Stokes equations
Mot clés : Mécanique des fluides, Tube hélicoïdale, Équations de Navier–Stokes

Eduard Marušić-Paloka 1; Igor Pažanin 1

1 Department of Applied Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
@article{CRMECA_2004__332_12_973_0,
     author = {Eduard Maru\v{s}i\'c-Paloka and Igor Pa\v{z}anin},
     title = {Effective flow of a viscous liquid through a helical pipe},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {973--978},
     publisher = {Elsevier},
     volume = {332},
     number = {12},
     year = {2004},
     doi = {10.1016/j.crme.2004.09.005},
     language = {en},
}
TY  - JOUR
AU  - Eduard Marušić-Paloka
AU  - Igor Pažanin
TI  - Effective flow of a viscous liquid through a helical pipe
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 973
EP  - 978
VL  - 332
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2004.09.005
LA  - en
ID  - CRMECA_2004__332_12_973_0
ER  - 
%0 Journal Article
%A Eduard Marušić-Paloka
%A Igor Pažanin
%T Effective flow of a viscous liquid through a helical pipe
%J Comptes Rendus. Mécanique
%D 2004
%P 973-978
%V 332
%N 12
%I Elsevier
%R 10.1016/j.crme.2004.09.005
%G en
%F CRMECA_2004__332_12_973_0
Eduard Marušić-Paloka; Igor Pažanin. Effective flow of a viscous liquid through a helical pipe. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 973-978. doi : 10.1016/j.crme.2004.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.005/

[1] F. Blanc; O. Gipouloux; G. Panasenko; A.M. Zine Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure, Math. Models Methods Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378

[2] E. Marušić-Paloka The effects of flexion and torsion for a fluid flow through a curved pipe, Appl. Math. Optim., Volume 44 (2001), pp. 245-272

[3] G. Panasenko Asymptotic expansion of the solution of the Navier–Stokes equation in a tube structure, C. R. Acad. Sci. Paris, Ser. IIb, Volume 326 (1998), pp. 867-872

[4] J.G. Heywood; R. Rannacher; S. Turek Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids, Volume 22 (1996), pp. 325-352

[5] E. Marušić-Paloka Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid, Asymptotic Analysis, Volume 33 (2003) no. 1, pp. 51-66

[6] E. Marušić-Paloka Incompressible newtonian flow through thin pipes, Dubrovnik 2001, Kluwer (2003), pp. 123-142

Cited by Sources:

Comments - Policy