We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter ɛ stands for the distance between two coils of the helix. The pipe has small cross-section of size ɛ. Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter ɛ that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe.
On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où ɛ est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à ɛ. A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre ɛ on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube.
Accepted:
Published online:
Mot clés : Mécanique des fluides, Tube hélicoïdale, Équations de Navier–Stokes
Eduard Marušić-Paloka 1; Igor Pažanin 1
@article{CRMECA_2004__332_12_973_0, author = {Eduard Maru\v{s}i\'c-Paloka and Igor Pa\v{z}anin}, title = {Effective flow of a viscous liquid through a helical pipe}, journal = {Comptes Rendus. M\'ecanique}, pages = {973--978}, publisher = {Elsevier}, volume = {332}, number = {12}, year = {2004}, doi = {10.1016/j.crme.2004.09.005}, language = {en}, }
Eduard Marušić-Paloka; Igor Pažanin. Effective flow of a viscous liquid through a helical pipe. Comptes Rendus. Mécanique, Volume 332 (2004) no. 12, pp. 973-978. doi : 10.1016/j.crme.2004.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.005/
[1] Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure, Math. Models Methods Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378
[2] The effects of flexion and torsion for a fluid flow through a curved pipe, Appl. Math. Optim., Volume 44 (2001), pp. 245-272
[3] Asymptotic expansion of the solution of the Navier–Stokes equation in a tube structure, C. R. Acad. Sci. Paris, Ser. IIb, Volume 326 (1998), pp. 867-872
[4] Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations, Internat. J. Numer. Methods Fluids, Volume 22 (1996), pp. 325-352
[5] Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid, Asymptotic Analysis, Volume 33 (2003) no. 1, pp. 51-66
[6] Incompressible newtonian flow through thin pipes, Dubrovnik 2001, Kluwer (2003), pp. 123-142
Cited by Sources:
Comments - Policy