An adaptive mesh procedure controlled by an error estimate for the Navier–Stokes equations is developed. The mesh can be refined but also coarsened by the mean of an agglomeration algorithm. The error estimation is based on an equation for the discretization error with a source term approximated by the use of a higher order discretized operator. The whole procedure is applied to a turbulent flow around a square-cross section cylinder. The efficiency of the method, evaluated in terms of CPU time and number of cells, shows interesting gains compared to single mesh computations.
Une procédure d'adaptation de maillage guidée par un estimateur d'erreur pour les équations de Navier–Stokes est développée. L'outil permet de raffiner le maillage et de le déraffiner par un algorithme d'agglomération de cellules. L'estimateur d'erreur est basée sur la résolution d'une équation pour l'erreur de discrétisation dont le terme source est approché en utilisant un schéma de discrétisation d'ordre élevé. La méthode est appliquée à un écoulement turbulent autour d'un cylindre de section carrée. On quantifie les gains obtenus par l'utilisation de la procédure adaptative en terme de temps et de nombre de points de calcul.
Mots-clés : Mécanique des fluides numérique, Volumes finis, Maillage adaptatif, Estimation d'erreur, Ecoulement turbulent
Alexander Hay 1; Michel Visonneau 1
@article{CRMECA_2005__333_1_103_0, author = {Alexander Hay and Michel Visonneau}, title = {Adaptive mesh strategy applied to turbulent flows}, journal = {Comptes Rendus. M\'ecanique}, pages = {103--110}, publisher = {Elsevier}, volume = {333}, number = {1}, year = {2005}, doi = {10.1016/j.crme.2004.09.014}, language = {en}, }
Alexander Hay; Michel Visonneau. Adaptive mesh strategy applied to turbulent flows. Comptes Rendus. Mécanique, High-order methods for the numerical simulation of vortical and turbulent flows , Volume 333 (2005) no. 1, pp. 103-110. doi : 10.1016/j.crme.2004.09.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.014/
[1] P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA 30th Aerospace Sciences Meeting, AIAA Paper 92-0439, Reno, NV, 1992
[2] F.R. Menter, Zonal two-equation k–ω turbulence models for aerodynamic flows, AIAA 24th Fluid Dynamics Conference, AIAA Paper 93-2906, Orlando, FL, 1993
[3] Comparison of explicit algebraic stress models and second-order turbulence closures for steady flow around ships, 7th Symposium on Numerical Ship Hydrodynamics, Nantes, France, 1999, pp. 1-15
[4] Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., Volume 29 (1997), pp. 123-169
[5] Error Control and Adaptivity in Scientific Computing, Kluwer Academic, 1999 (pp. 247–278)
[6] Discretization error estimation using error transport equation, ASME 2002 Fluids Engineering Division Summer Meeting, July 14–18, Montreal, Quebec, Canada, 2002
[7] Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002
[8] A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg., Volume 185 (2000), pp. 1-19
[9] A. Hay, M. Visonneau, Adaptive error control strategy: application to a turbulent flow, AIAA 16th Computational Fluid Dynamics Conference, AIAA Paper 2003-3848, June 23–26, Orlando, FL, 2003
[10] Experimental study of the turbulent wake flow behind a square cylinder near a wall, ASME Fluids Engineering Division Summer Meeting, Canada, Vancouver, 1997, pp. 1-7
[11] Numerical study of the turbulent flow around a square cylinder near a wall, International Mechanical Engineering Congress and Exhibition, IMECE 2002-32285, November 17–22, New Orleans, LA, USA, 2002
Cited by Sources:
Comments - Policy