To allow for a reliable examination of the interaction between velocity fluctuations, acoustics and combustion, a novel numerical procedure is discussed in which a spectral solution of the Navier–Stokes equations is directly associated to a high-order finite difference fully compressible DNS solver (sixth order PADE). Using this combination of high-order solvers with accurate boundary conditions, simulations have been performed where a turbulent premixed V-shape flame develops in grid turbulence. In the light of the DNS results, a sub-model for premixed turbulent combustion is analyzed.
Une nouvelle procédure numérique est discutée qui permet d'étudier de façon réaliste, l'interaction entre les fluctuations de vitesse, l'acoustique et la combustion. Dans cette approche, une solution spectrale des équations de Navier–Stokes produit la condition d'entrée d'un code de résolution des équations de Navier–Stokes pleinement compressibles. Une méthode de différences finies d'ordre élevée (schéma PADE) est utilisée dans ce deuxième solveur. En utilisant cette combinaison de solveurs avec des conditions aux limites précises, des simulations ont été effectuées dans lesquelles une flamme en V se développe dans une turbulence de grille. L'analyse de la base de données permet de comprendre le comportement de la flamme turbulente. Une fermeture est proposée pour la modélisation du micro-mélange turbulent.
Mots-clés : Mécanique des fluides, Combustion turbulente, Simulation numérique directe
Raphael Hauguel 1; Luc Vervisch 1; Pascale Domingo 1
@article{CRMECA_2005__333_1_95_0, author = {Raphael Hauguel and Luc Vervisch and Pascale Domingo}, title = {DNS of premixed turbulent {V-flame:} coupling spectral and finite difference methods}, journal = {Comptes Rendus. M\'ecanique}, pages = {95--102}, publisher = {Elsevier}, volume = {333}, number = {1}, year = {2005}, doi = {10.1016/j.crme.2004.09.012}, language = {en}, }
TY - JOUR AU - Raphael Hauguel AU - Luc Vervisch AU - Pascale Domingo TI - DNS of premixed turbulent V-flame: coupling spectral and finite difference methods JO - Comptes Rendus. Mécanique PY - 2005 SP - 95 EP - 102 VL - 333 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2004.09.012 LA - en ID - CRMECA_2005__333_1_95_0 ER -
Raphael Hauguel; Luc Vervisch; Pascale Domingo. DNS of premixed turbulent V-flame: coupling spectral and finite difference methods. Comptes Rendus. Mécanique, High-order methods for the numerical simulation of vortical and turbulent flows , Volume 333 (2005) no. 1, pp. 95-102. doi : 10.1016/j.crme.2004.09.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.012/
[1] Model free simulations of turbulent reactive flows, Prog. Energy Combust. Sci., Volume 15 (1989), pp. 1-107
[2] Using direct numerical simulations to understand premixed turbulent combustion, Proceedings of the 26th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1996, pp. 219-232
[3] Direct numerical simulation of non-premixed turbulent flame, Annu. Rev. Fluid Mech., Volume 30 (1998), pp. 655-692
[4] A numerical analysis on structure of turbulent hydrogen jet lifted flame, Proc. Combust. Inst., Volume 29 (2002) no. 2, pp. 2009-2015
[5] Compact finite difference schemes with spectral like resolution, J. Comput. Phys., Volume 103 (1992), pp. 16-42
[6] Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ildm with differential diffusion, Proc. Combust. Inst., Volume 28 (2000), pp. 1901-1908
[7] Gradient and counter-gradient scalar transport in turbulent premixed flames, J. Fluid Mech., Volume 332 (1997), pp. 263-293
[8] P. Domingo, K.N.C. Bray, Laminar flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combust. Flame (2000), in press
[9] Premixed flame effects on turbulence and pressure-related terms, Combust. Flame, Volume 102 (1995), pp. 447-461
[10] A numerical procedure to stabilize planar turbulent premixed flames, Second International Symposium on Turbulence and Shear Flow Phenomena, 2001
[11] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 1 (1992) no. 101, pp. 104-129
[12] Theoretical and Numerical Combustion, Edwards, 2001
[13] Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame, Volume 127 (2001) no. 3, pp. 2124-2134
[14] C.T. Bowman, R.K. Hanson, W.C. Gardiner, V. Lissianski, M. Frenklach, M. Goldenberg, G.P. Smith, D.R. Crosley, D.M. Golden, An optimized detailed chemical reaction mechanism for methane combustion and no formation and reburning, Technical report, Gas Research Institute, Chicago, IL, Report No. GRI-97/0020, 1997
[15] The challenge of turbulent combustion, Proc. Combust. Inst., Volume 26 (1996), pp. 1-26
[16] Turbulent combustion modeling, Prog. Energy Combust. Sci., Volume 28 (2002), pp. 193-266
[17] A laminar flamelet approach to subgrid-scale chemistry in turbulent flows, Combust. Flame, Volume 109 (1997) no. 3, pp. 332-341
[18] Pdf method for turbulent reacting flows, Prog. Energy Combust. Sci., Volume 11 (1985), pp. 119-195
[19] A new model of premixed wrinkled flame propagation based on a scalar dissipation equation, Combust. Flame, Volume 96 (1994) no. 4, pp. 443-457
[20] Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches, Phys. Fluids, Volume 10 (1995) no. 7, pp. 2496-2503
[21] Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Twenty-Seventh Symposium (Int.) on Combustion, The Combustion Institute, 1998, pp. 917-925
[22] A unified statistical model of the premixed turbulent flame, Acta Astronaut., Volume 4 (1997), pp. 291-319
Cited by Sources:
Comments - Policy