The interaction of three-dimensional isotropic turbulence with a plane shock at Mach numbers of and is investigated via direct numerical simulation. The numerical scheme is based on a characteristic-type formulation of the Navier–Stokes equations and uses fifth-order upwind schemes in space, a fourth order Runge Kutta scheme in time and a shock-fitting as inlet condition. The isotropic turbulence was generated in a separate computation based on a prescribed energy spectrum. This turbulent flow is considered as frozen, and is convected through the shock with a prescribed average shock speed. An FFT interpolation is used to obtain the upstream values at the instantaneous shock location. Turbulence enhancement is observed, and the evolution of velocity fluctuations as well as turbulence microscales are in good agreement with the behaviour observed using shock-capturing.
Jörn Sesterhenn 1 ; Jean-François Dohogne 1 ; Rainer Friedrich 1
@article{CRMECA_2005__333_1_87_0, author = {J\"orn Sesterhenn and Jean-Fran\c{c}ois Dohogne and Rainer Friedrich}, title = {Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting}, journal = {Comptes Rendus. M\'ecanique}, pages = {87--94}, publisher = {Elsevier}, volume = {333}, number = {1}, year = {2005}, doi = {10.1016/j.crme.2004.09.017}, language = {en}, }
TY - JOUR AU - Jörn Sesterhenn AU - Jean-François Dohogne AU - Rainer Friedrich TI - Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting JO - Comptes Rendus. Mécanique PY - 2005 SP - 87 EP - 94 VL - 333 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2004.09.017 LA - en ID - CRMECA_2005__333_1_87_0 ER -
%0 Journal Article %A Jörn Sesterhenn %A Jean-François Dohogne %A Rainer Friedrich %T Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting %J Comptes Rendus. Mécanique %D 2005 %P 87-94 %V 333 %N 1 %I Elsevier %R 10.1016/j.crme.2004.09.017 %G en %F CRMECA_2005__333_1_87_0
Jörn Sesterhenn; Jean-François Dohogne; Rainer Friedrich. Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting. Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 87-94. doi : 10.1016/j.crme.2004.09.017. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.017/
[1] Turbulence in supersonic flow, J. Aeronaut. Sci., Volume 20 (1953), pp. 657-674
[2] H.S. Ribner, Convection of a pattern of vorticity through a shock wave, Technical Report TR 1164, NACA, 1953
[3] Turbulence amplification by a shock wave and rapid distortion theory, Phys. Fluid. A, Volume 5 (1992), pp. 2539-2550
[4] Shock wave-turbulence interactions, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 309-345
[5] A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes, Comput. Fluids, Volume 30 (2001) no. 1, pp. 37-67
[6] A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems, J. Comput. Phys., Volume 127 (1996), pp. 27-51
[7] Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., Volume 103 (1992), pp. 16-42
[8] Linear interaction of a cylindrical entropy spot with a shock, Phys. Fluids, Volume 13 (2001) no. 8, pp. 2403-2422
[9] S. Lee, P. Moin, S.K. Lele, Interaction of isotropic turbulence with a shock wave, Technical Report TF-52, Department of Mechanical Engineering, Stanford University, 1992
[10] Interaction of isotropic turbulence with shock waves: effect of shock strength, J. Fluid Mech., Volume 340 (1997), pp. 225-247
[11] R. Hannappel, Direkte numerische Simulation der Wechselwirkung eines Verdichtungsstoßes mit isotroper Turbulenz, PhD thesis, Technische Universität München, 1995
[12] Direct numerical simulation of a Mach 2 shock interacting with isotropic turbulence, Appl. Sci. Res., Volume 54 (1995), pp. 205-221
[13] Gasdynamik, Teubner, Stuttgart, 1966
[14] A First Course in Turbulence, MIT Press, 1972
[15] Equations des gaz turbulents compressibles ii, J. Mécanique, Volume 4 (1965), pp. 391-421
Cité par Sources :
Commentaires - Politique