Comptes Rendus
High-order LES modeling of turbulent incompressible flow
Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 39-49.

This article presents the high-order algorithms that we have developed for large-eddy simulation of incompressible flows, and the results that have been obtained for the 3D turbulent wake of a cylinder at a Reynolds number of Re=3900.

L'article présente les algorithmes d'ordre élevé que nous avons développés pour la simulation des grandes échelles d'écoulements incompressibles ainsi que les résultats obtenus pour le sillage 3D turbulent d'un cylindre à un nombre de Reynolds de Re=3900.

Published online:
DOI: 10.1016/j.crme.2004.09.018
Keywords: Computational fluid mechanics, Large-eddy simulation, Spectral methods, Wake flows
Mot clés : Mécanique des fluides numérique, Simulation des grandes échelles, Méthodes spectrales, Ecoulements de type sillage

Richard Pasquetti 1

1 Laboratoire J.A. Dieudonné, UMR CNRS 6621, université de Nice–Sophia Antipolis, parc Valrose, 06108 Nice cedex 02, France
@article{CRMECA_2005__333_1_39_0,
     author = {Richard Pasquetti},
     title = {High-order {LES} modeling of turbulent incompressible flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {39--49},
     publisher = {Elsevier},
     volume = {333},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crme.2004.09.018},
     language = {en},
}
TY  - JOUR
AU  - Richard Pasquetti
TI  - High-order LES modeling of turbulent incompressible flow
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 39
EP  - 49
VL  - 333
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2004.09.018
LA  - en
ID  - CRMECA_2005__333_1_39_0
ER  - 
%0 Journal Article
%A Richard Pasquetti
%T High-order LES modeling of turbulent incompressible flow
%J Comptes Rendus. Mécanique
%D 2005
%P 39-49
%V 333
%N 1
%I Elsevier
%R 10.1016/j.crme.2004.09.018
%G en
%F CRMECA_2005__333_1_39_0
Richard Pasquetti. High-order LES modeling of turbulent incompressible flow. Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 39-49. doi : 10.1016/j.crme.2004.09.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.018/

[1] B.J. Geurt Inverse modeling for large-eddy simulation, Phys. Fluids, Volume 9 (1997) no. 12, pp. 3585-3587

[2] S. Stolz; N.A. Adams An approximate deconvolution procedure for large-eddy simulation, Phys. Fluids, Volume 11 (1999) no. 7, pp. 1699-1701

[3] J. Bardina, J.H. Ferziger, W.C. Reynolds, Improved turbulence models based on large eddy simulation of homogeneous incompressible turbulence, Stanford University, Report TF-19, 1983

[4] R. Pasquetti; C.J. Xu High-order algorithms for large eddy simulation of incompressible flows, J. Sci. Comput., Volume 17 (2002) no. 1–4, pp. 273-284

[5] P. Sagaut Introduction à la simulation des grandes échelles pour les écoulements de fluide incompressible, Mathématiques & Applications, Springer, 1998

[6] M. Germano; U. Piomelli; P. Moin; W.H. Cabot A dynamic sub-grid scale eddy viscosity model, Phys. Fluids, Volume 3 (1991) no. 7, pp. 1760-1765

[7] T.B. Gatsky; M.Y. Hussaini; J.L. Lumley Simulation and modeling of turbulent flows (J.H. Ferziger, ed.), ICASE/LaRC Series in Computational Science and Engineering, Chapter 3, Large Eddy Simulation, 1996, pp. 109-154

[8] E. Tadmor Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 26 (1989) no. 1, pp. 30-44

[9] Y. Maday; S. Kaber; M. Ould; E. Tadmor Legendre pseudo-spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal., Volume 30 (1993) no. 2, pp. 321-342

[10] M. Lesieur; O. Métais New trends in large-eddy simulation of turbulence, Annu. Rev. Fluid Mech., Volume 28 (1996), pp. 45-82

[11] M.Y. Forestier; R. Pasquetti; R. Peyret Computations of 3D wakes in stratified fluids, Computational Fluid Dynamics Conference ECCOMAS 2000, 2000 (proc. in CD)

[12] L. Cousin; R. Pasquetti High-order methods for the simulation of transitional to turbulent wakes (Y. Lu; W. Sun; T. Tang, eds.), Third Int. Workshop on Scientific Computing and Applications, City University Hong-Kong, 6–9 January 2003, Advances in Scientific Computing and Applications, Science Press, Beijing, New York, 2004, pp. 133-143

[13] Y. Maday; A.T. Pakera; E.M. Ronquist An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow, J. Sci. Comp., Volume 5 (1990) no. 4, pp. 263-292

[14] R.M. Phillips; T.N. Phillips Flow past a cylinder using a semi-Lagrangian spectral element method, Appl. Numer. Math., Volume 33 (2000), pp. 251-257

[15] C.J. Xu; R. Pasquetti On the efficiency of semi-implicit and semi-Lagrangian spectral methods for the calculation of incompressible flows, Int. J. Numer. Methods Fluids, Volume 35 (2001), pp. 319-340

[16] K. Goda A multistep technique with implicit difference schemes for calculation two and three dimensional cavity flows, J. Comput. Phys., Volume 30 (1979) no. 12, pp. 76-95

[17] G.S. Karamanos; G.E. Karniadakis A spectral vanishing viscosity method for large-eddy simulation, J. Comput. Phys., Volume 163 (2000), pp. 22-50

[18] C.J. Xu; R. Pasquetti Stabilized spectral element computations of high Reynolds number incompressible flows, J. Comput. Phys., Volume 196 (2004), pp. 680-704

[19] M. Azaiez; A. Fikri; G. Labrosse A unique grid spectral solver of the nD Cartesian unsteady Stokes system. Illustrative numerical results, Finite Elem. Anal. Design, Volume 16 (1994) no. 3–4, pp. 247-260

[20] O. Botella On the solution of the Navier–Stokes equations using Chebyshev projection schemas with third order accuracy in time, Computers & Fluids, Volume 26 (1997) no. 2, pp. 107-116

[21] A.G. Kravchenko; P. Moin Numerical studies of flow over a circular cylinder at Re=3900, Phys. Fluids, Volume 12 (2000) no. 2, pp. 403-417

[22] J. Jeong; F. Hussain On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94

[23] R.P. Hansen; L.N. Long Large-eddy simulation of a circular cylinder on unstructured grids, Proc. of 40th AIAA Aerospace Sciences Meeting and Exhibit, 14–17 January 2002

[24] J.A. Domaradzki; E.M. Saiki A subgrid-scale model based on the estimation of unresolved scales of turbulence, Phys. Fluids, Volume 9 (1997) no. 7, pp. 2148-2164

[25] S. Ghosal; P. Moin The basic equations for the large-eddy simulation of turbulent flows in complex geometry, J. Comput. Phys., Volume 118 (1995), pp. 24-37

Cited by Sources:

Comments - Policy