Comptes Rendus
Direct Numerical Simulation of a Gaussian acoustic wave interaction with a turbulent premixed flame
Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 29-37.

The interaction of a Gaussian negative pulse with a H2/O2/N2 turbulent premixed flame is examined using Direct Numerical Simulation (DNS). Transport properties and chemical kinetics are described in a very detailed manner. An extended nonlinear local Rayleigh's criterion, for laminar as well as turbulent, premixed or nonpremixed flames, is proposed. Situations in which amplification or attenuation occur are listed. Calculations of a turbulent flame are then carried out with and without an acoustic wave and results are recorded at the same time. The influence of acoustic wave/turbulent flame interaction is obtained by a simple difference. It is shown that longitudinal and transverse velocity components are perturbed by the turbulent flame. Moreover, the vorticity induced by the acoustic wave is observed to be weak. Finally, Rayleigh's criterion shows that wave amplification occurs punctually.

L'interaction d'une onde négative gaussienne avec une flamme turbulente prémélangée H2/O2/N2 est examinée à l'aide d'une simulation directe. Les propriétés de transport et de cinétique chimique sont décrites de manière détaillée. Un critère de Rayleigh étendu au régime non linéaire, valable pour des flammes laminaires aussi bien que turbulentes, prémélangées ou de diffusion, est proposé. Les cas où il y a amplification (atténuation) sont recensés. Des simulations directes de flammes turbulentes sont ensuite effectuées avec et sans perturbations acoustiques. Les résultats sont stockés aux mêmes instants. Par simple soustraction, il est possible d'obtenir l'influence de la flamme turbulente sur le comportement de l'onde acoustique. Il est montré que les composantes de vitesse longitudinale et transversale sont perturbées par la flamme turbulente. En outre, la vorticité induite par le transport de l'onde acoustique est faible. Finalement, le critère de Rayleigh montre que l'amplification de l'onde est locale et située dans des zones de petites dimensions.

Published online:
DOI: 10.1016/j.crme.2004.09.015
Keywords: Computational fluid mechanics, Combustion instability, Rayleigh's criterion, Turbulent premixed flame
Mot clés : Mécanique des fluides numérique, Instabilité de combustion, Critère de Rayleigh, Flamme turbulente prémélangée

Alain Laverdant 1; Dominique Thévenin 2

1 Office National d'Études et de Recherches Aérospatiales (ONERA), 29, avenue de la Division Leclerc, BP 72, 92322 Châtillon-sous-Bagneux, France
2 Laboratory of Fluid Mechanics and Technical Flows, University of Magdeburg ‘Otto von Guericke’, Universitaetsplatz 2, 39106 Magdeburg, Germany
@article{CRMECA_2005__333_1_29_0,
     author = {Alain Laverdant and Dominique Th\'evenin},
     title = {Direct {Numerical} {Simulation} of a {Gaussian} acoustic wave interaction with a turbulent premixed flame},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {29--37},
     publisher = {Elsevier},
     volume = {333},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crme.2004.09.015},
     language = {en},
}
TY  - JOUR
AU  - Alain Laverdant
AU  - Dominique Thévenin
TI  - Direct Numerical Simulation of a Gaussian acoustic wave interaction with a turbulent premixed flame
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 29
EP  - 37
VL  - 333
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2004.09.015
LA  - en
ID  - CRMECA_2005__333_1_29_0
ER  - 
%0 Journal Article
%A Alain Laverdant
%A Dominique Thévenin
%T Direct Numerical Simulation of a Gaussian acoustic wave interaction with a turbulent premixed flame
%J Comptes Rendus. Mécanique
%D 2005
%P 29-37
%V 333
%N 1
%I Elsevier
%R 10.1016/j.crme.2004.09.015
%G en
%F CRMECA_2005__333_1_29_0
Alain Laverdant; Dominique Thévenin. Direct Numerical Simulation of a Gaussian acoustic wave interaction with a turbulent premixed flame. Comptes Rendus. Mécanique, Volume 333 (2005) no. 1, pp. 29-37. doi : 10.1016/j.crme.2004.09.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.015/

[1] J.W.S. Rayleigh Nature, 18 (1878), p. 319

[2] J.W.S. Rayleigh The Theory of Sound, vol. II, Dover, New York, NJ, 1945 (p. 226)

[3] Nonsteady Flame Propagation (G.H. Markstein, ed.), Pergamon Press, Paris, 1964

[4] A. Laverdant; D. Thévenin Interaction of a Gaussian acoustic wave with a turbulent premixed flame, Combust. Flame, Volume 134 (2003) no. 1–2, pp. 11-19

[5] S. Kotake On the combustion noise related to chemical reactions, J. Sound Vib., Volume 42 (1975) no. 3, pp. 399-410

[6] A. Laverdant; T. Poinsot; S.M. Candel Influence of the mean temperature field on the acoustic mode structure in a dump combustor, J. Propul. Power, Volume 2 (1985) no. 2, pp. 134-144

[7] A. Laverdant, Contribution à l'étude des instabilités de combustion des foyers aérobies, Thèse d'État, University of Rouen, 1991

[8] F.A. Williams Combustion Theory, Benjamin Cummings, Menlo Park, CA, 1985

[9] A.S. Monin; A.M. Yaglom Statistical Fluid Mechanics: Mechanics of Turbulence, MIT Press, Cambridge, MA, 1979

[10] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, Edwards, Philadelphia, PA, 2001

[11] D. Thévenin; F. Behrendt; U. Maas; B. Przywara; J. Warnatz Development of a parallel direct simulation code to investigate reactive flows, Comput. Fluids, Volume 25 (1996) no. 5, pp. 485-496

[12] D. Thévenin; E. van Kalmthout; S. Candel Two-dimensional direct numerical simulations of turbulent diffusion flames using detailed chemistry (J.P. Chollet; P.R. Voke; L. Kleiser, eds.), Direct and Large-Eddy Simulation II, Kluwer Academic, 1997, pp. 343-354

[13] T. Poinsot; S.K. Lele Boundary conditions for direct simulation of compressible viscous flows, J. Comput. Phys., Volume 101 (1992), pp. 104-129

[14] M. Baum; T. Poinsot; D. Thévenin Accurate boundary conditions for multicomponent reactive flows, J. Comput. Phys., Volume 116 (1994), pp. 247-261

[15] R.J. Kee, J.A. Miller, T.H. Jefferson, Chemkin: a general-purpose, problem-independent, transportable, Fortran chemical kinetics code package, Sandia Tech. Report SAND80-8003, 1980

[16] R.J. Kee, J. Warnatz, J.A. Miller, A Fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients, Sandia Tech. Report SAND83-8209, 1983

[17] R. Hilbert; D. Thévenin Autoignition of turbulent non-premixed flames investigated using direct numerical simulations, Combust. Flame, Volume 128 (2002) no. 1–2, pp. 22-37

[18] U. Maas; D. Thévenin Correlation analysis of direct numerical simulation data of turbulent non-premixed flames, Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998, pp. 1183-1189

[19] M. Baum; T. Poinsot; D.C. Haworth; N. Darabiha Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows, J. Fluid Mech., Volume 281 (1994), pp. 1-32

[20] J.A. Miller; R.E. Mitchell; M. Smooke; R.J. Kee Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments, Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982, pp. 181-196

[21] J.O. Hinze Turbulence, McGraw-Hill, 1975

[22] T. Lieuwen Theory of high frequency acoustic wave scattering by turbulent flames, Combust. Flame, Volume 126 (2001), pp. 1489-1505

Cited by Sources:

Comments - Policy