A finite volume scheme, which is based on fourth order accurate central differences in spatial directions and on a hybrid explicit/semi-implicit time stepping scheme, was developed to solve the incompressible Navier–Stokes and energy equations on cylindrical staggered grids. This includes a new fourth order accurate discretization of the velocity and temperature fields at the singularity of the cylindrical coordinate system and a new stability condition [J. Appl. Numer. Anal. Comput. Math. 1 (2004) 315–326]. The method was applied in direct numerical simulations of turbulent Rayleigh–Bénard convection for different Rayleigh numbers , , in wide cylinders with the aspect ratios and (where R denotes the radius and H – the height of the cylinder).
Olga Shishkina 1; Claus Wagner 1
@article{CRMECA_2005__333_1_17_0, author = {Olga Shishkina and Claus Wagner}, title = {A fourth order accurate finite volume scheme for numerical simulations of turbulent {Rayleigh{\textendash}B\'enard} convection in cylindrical containers}, journal = {Comptes Rendus. M\'ecanique}, pages = {17--28}, publisher = {Elsevier}, volume = {333}, number = {1}, year = {2005}, doi = {10.1016/j.crme.2004.09.020}, language = {en}, }
TY - JOUR AU - Olga Shishkina AU - Claus Wagner TI - A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers JO - Comptes Rendus. Mécanique PY - 2005 SP - 17 EP - 28 VL - 333 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2004.09.020 LA - en ID - CRMECA_2005__333_1_17_0 ER -
%0 Journal Article %A Olga Shishkina %A Claus Wagner %T A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers %J Comptes Rendus. Mécanique %D 2005 %P 17-28 %V 333 %N 1 %I Elsevier %R 10.1016/j.crme.2004.09.020 %G en %F CRMECA_2005__333_1_17_0
Olga Shishkina; Claus Wagner. A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers. Comptes Rendus. Mécanique, High-order methods for the numerical simulation of vortical and turbulent flows , Volume 333 (2005) no. 1, pp. 17-28. doi : 10.1016/j.crme.2004.09.020. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.020/
[1] A transition to turbulence in helium gas, Phys. Rev. A, Volume 36 (1987), pp. 5870-5873
[2] Heat transport in high-Rayleigh number convection, Phys. Rev. A, Volume 42 (1990), pp. 3650-3653
[3] High Rayleigh number convection, Annu. Rev. Fluid Mech., Volume 26 (1994), pp. 137-168
[4] Turbulent Rayleigh–Bénard convection in gaseous and liquid He, Phys. Fluids, Volume 13 (2001), pp. 1300-1320
[5] Scaling in thermal convection: a unifying theory, J. Fluid Mech., Volume 407 (2000), pp. 27-56
[6] Large Eddy Simulations of Rayleigh–Bénard convection using subgrid scale estimation model, Phys. Fluids, Volume 12 (2000), pp. 169-184
[7] Direct numerical simulation of laminar and turbulent Bénard convection, J. Fluid Mech., Volume 119 (1982), pp. 27-53
[8] Rayleigh number scaling in numerical convection, J. Fluid Mech., Volume 310 (1996), pp. 139-179
[9] Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell, J. Fluid Mech., Volume 477 (2003), pp. 19-49
[10] Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment, J. Fluid Mech., Volume 268 (1994), pp. 175-209
[11] F. Unger, Numerische Simulation turbulenter Rohrströmungen, Dissertation, Lehrstuhl fuer Fluidmechanik, TU Muenchen, 1994
[12] H. Choi, P. Moin, J. Kim, Turbulent drug reduction: studies of feedback control and flow over riblets, Thermoscience Division, Dept. of Mech. Eng., Stanford, Report TF-55, 1992
[13] On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys., Volume 131 (1997), pp. 310-322
[14] Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli, J. Comput. Phys., Volume 18 (1975), pp. 376-404
[15] Fast elliptic solvers and their application in fluid dynamics (W. Kollmann, ed.), Computational Fluid Dynamics, Hemishere, Washington, 1980, pp. 376-404
[16] Numerical solution of the Navier–Stokes equations, Math. Comput., Volume 22 (1968), pp. 745-762
[17] On the convergence of discrete approximations to the Navier–Stokes equations, Math. Comput., Volume 23 (1969), pp. 341-353
[18] O. Shishkina, C. Wagner, A fourth order finite volume scheme for turbulent flow simulations in cylindrical domains, Computers and Fluids, submitted for publication
[19] Stability conditions for the Leapfrog–Euler scheme with central spatial discretization of any order, J. Appl. Numer. Anal. Comput. Math., Volume 1 (2004), pp. 315-326
[20] Stability analysis of high-order finite volume schemes in turbulence simulations (G. Psihoyios, ed.), NACoM-2003 Extended Abstracts, APU, Cambridge, UK, 2003, pp. 158-161
[21] Direct computation of the sound generated by an axisymmetric jet, AIAA J., Volume 35 (1997) no. 10, p. 1574
[22] Numerical treatment of polar coordinate singularities, J. Comput. Phys., Volume 157 (2000), pp. 787-795
Cited by Sources:
Comments - Policy