[Calculations of unsteady flow with non linear effects of the free surface]
This Note describes a computational method for three dimensional unsteady flows around a submerged body with forward speed. The two free-surface boundary conditions are written under their non linear form. The calculations are carried out in the time domain using a mixed Euler–Lagrange scheme based on the knowledge, at each time step, of the potential on the free surface and of the location of this surface. A mixed problem with a Neumann condition on the body and a Dirichlet one on the free surface is then solved. The panel method uses desingularized sources to represent free surface effects. Validations are carried out on steady flows.
On présente une méthode de calculs de l'écoulement tridimensionnel instationnaire autour d'un obstacle immergé avec vitesse d'avance par une méthode de singularités. Les deux conditions de surface libre sont utilisées sous leurs formes non-linéaires. On utilise une modélisation dans le domaine temporel par une méthode mixte Euler–Lagrange reposant sur la connaissance, à chaque pas de temps, du potentiel sur la surface libre et de sa position. On résout alors un problème mixte, avec une condition de Neumann sur le corps et de Dirichlet sur la surface libre. On utilise une technique des sources désingularisées. La méthode est validée sur des exemples stationnaires.
Accepted:
Published online:
Keywords: Computational fluid mechanics, Hydrodynamics, Non linear free surface effects, Forces, Wave pattern, Time domain, Unsteady
Alain Rebeyrotte 1; Malick Ba 1; Michel Guilbaud 2
@article{CRMECA_2005__333_2_163_0, author = {Alain Rebeyrotte and Malick Ba and Michel Guilbaud}, title = {Prise en compte des effets non lin\'eaires de surface libre en \'ecoulement instationnaire}, journal = {Comptes Rendus. M\'ecanique}, pages = {163--170}, publisher = {Elsevier}, volume = {333}, number = {2}, year = {2005}, doi = {10.1016/j.crme.2004.10.002}, language = {fr}, }
TY - JOUR AU - Alain Rebeyrotte AU - Malick Ba AU - Michel Guilbaud TI - Prise en compte des effets non linéaires de surface libre en écoulement instationnaire JO - Comptes Rendus. Mécanique PY - 2005 SP - 163 EP - 170 VL - 333 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2004.10.002 LA - fr ID - CRMECA_2005__333_2_163_0 ER -
Alain Rebeyrotte; Malick Ba; Michel Guilbaud. Prise en compte des effets non linéaires de surface libre en écoulement instationnaire. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 163-170. doi : 10.1016/j.crme.2004.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.10.002/
[1] A practical nonlinear method for calculating ship wave-making and wave resistance, 19th Symp. on Naval Hydrodynamics, Seoul, South Korea, 1992
[2] D.-C. Scullen, Accurate Computation of Nonlinear Free-Surface Flows, Ph.D. thesis, Adelaide University, Australia, 1998
[3] The deformation of steep surface waves on water: a numerical method of computation, Proc. Roy. Soc. London A Math., Volume 364 (1978), pp. 1-26
[4] Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves, J. Comput. Phys., Volume 126 (1996), pp. 139-151
[5] Nonlinear reaction forces on oscillating bodies by a time-domain panel method, J. Ship Res., Volume 40 (1996), pp. 288-302
[6] P.-J.-F. Berkvens, Floating bodies interacting with water waves; Development of a time-domain panel method, Ph.D. thesis, Twente University, Enschede, Netherlands, 1998
[7] Fully non-linear interactions of long-crested wave packets with a three-dimensional body, 22nd Symp. on Naval Hydrodynamics, Washington, USA, 1998
[8] Numerical simulations of nonlinear axisymmetric flows with a free surface, J. Fluid Mech., Volume 178 (1987), pp. 195-219
[9] Numerical modeling of short-time scale nonlinear water waves generated by large vertical motions of non-wallsided bodies, 19th Symp. on Naval Hydrodynamics, Seoul, South Korea, 1992
[10] The flow about arbitrary 3D smooth bodies, J. Ship Res., Volume 10 (1975), pp. 206-218
[11] Solution of potential problems using an over determined complex boundary integral method, J. Comput. Phys., Volume 84 (1989), pp. 414-440
[12] Three-dimensional desingularized boundary integral methods for potential problems, Int. J. Numer. Methods Fluids, Volume 12 (1991), pp. 785-803
[13] On the accuracy of the desingularized boundary integral method in free surface flow problems, Int. J. Numer. Methods Fluids, Volume 25 (1997), pp. 1163-1184
[14] A. Rebeyrotte, Contribution à l'étude des effets non linéaires sur la surface libre au dessus de corps immergés en mouvement instationnaire, Thèse de doctorat de l'Université de Poitiers, 2003
[15] Unsteady non linear flows around submerged body in water of finite depth, 6th Numerical Towing Tank Symposium (NuTTS'03), Rome, Italy, 2003
[16] Numerical computations and integrations of the wave resistance Green's function, Theor. Comput. Fluid Dynam., Volume 12 (1998) no. 3, pp. 179-194
[17] Seakeeping calculations with forward speed using time-domain analysis, 17th Symp. on Naval Hydrodynamics, La Hague, Pays-Bas, 1988
[18] The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance, Proc. Roy. Soc. London A Math., Volume 81 (1908), pp. 398-430
Cited by Sources:
Comments - Policy