Comptes Rendus
Prise en compte des effets non linéaires de surface libre en écoulement instationnaire
[Calculations of unsteady flow with non linear effects of the free surface]
Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 163-170.

This Note describes a computational method for three dimensional unsteady flows around a submerged body with forward speed. The two free-surface boundary conditions are written under their non linear form. The calculations are carried out in the time domain using a mixed Euler–Lagrange scheme based on the knowledge, at each time step, of the potential on the free surface and of the location of this surface. A mixed problem with a Neumann condition on the body and a Dirichlet one on the free surface is then solved. The panel method uses desingularized sources to represent free surface effects. Validations are carried out on steady flows.

On présente une méthode de calculs de l'écoulement tridimensionnel instationnaire autour d'un obstacle immergé avec vitesse d'avance par une méthode de singularités. Les deux conditions de surface libre sont utilisées sous leurs formes non-linéaires. On utilise une modélisation dans le domaine temporel par une méthode mixte Euler–Lagrange reposant sur la connaissance, à chaque pas de temps, du potentiel sur la surface libre et de sa position. On résout alors un problème mixte, avec une condition de Neumann sur le corps et de Dirichlet sur la surface libre. On utilise une technique des sources désingularisées. La méthode est validée sur des exemples stationnaires.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2004.10.002
Mot clés : Mécanique des fluides numérique, Hydrodynamique, Conditions de surface libre non linéaires, Forces, Champ de vagues, Domaine temporel, Instationnaire
Keywords: Computational fluid mechanics, Hydrodynamics, Non linear free surface effects, Forces, Wave pattern, Time domain, Unsteady

Alain Rebeyrotte 1; Malick Ba 1; Michel Guilbaud 2

1 LEA (UMR CNRS 6609), ENSMA, 1, rue Clément Ader, BP 40109, 86960 Futuroscope Chasseneuil cedex, France
2 LEA (UMR CNRS 6609), CEAT, université de Poitiers, 43, rue de l'Aérodrome, 86036 Poitiers cedex, France
@article{CRMECA_2005__333_2_163_0,
     author = {Alain Rebeyrotte and Malick Ba and Michel Guilbaud},
     title = {Prise en compte des effets non lin\'eaires de surface libre en \'ecoulement instationnaire},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {163--170},
     publisher = {Elsevier},
     volume = {333},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crme.2004.10.002},
     language = {fr},
}
TY  - JOUR
AU  - Alain Rebeyrotte
AU  - Malick Ba
AU  - Michel Guilbaud
TI  - Prise en compte des effets non linéaires de surface libre en écoulement instationnaire
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 163
EP  - 170
VL  - 333
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2004.10.002
LA  - fr
ID  - CRMECA_2005__333_2_163_0
ER  - 
%0 Journal Article
%A Alain Rebeyrotte
%A Malick Ba
%A Michel Guilbaud
%T Prise en compte des effets non linéaires de surface libre en écoulement instationnaire
%J Comptes Rendus. Mécanique
%D 2005
%P 163-170
%V 333
%N 2
%I Elsevier
%R 10.1016/j.crme.2004.10.002
%G fr
%F CRMECA_2005__333_2_163_0
Alain Rebeyrotte; Malick Ba; Michel Guilbaud. Prise en compte des effets non linéaires de surface libre en écoulement instationnaire. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 163-170. doi : 10.1016/j.crme.2004.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.10.002/

[1] H.-C. Raven A practical nonlinear method for calculating ship wave-making and wave resistance, 19th Symp. on Naval Hydrodynamics, Seoul, South Korea, 1992

[2] D.-C. Scullen, Accurate Computation of Nonlinear Free-Surface Flows, Ph.D. thesis, Adelaide University, Australia, 1998

[3] M.-S. Longuet-Higgins; E.D. Cokelet The deformation of steep surface waves on water: a numerical method of computation, Proc. Roy. Soc. London A Math., Volume 364 (1978), pp. 1-26

[4] A.-H. Clément Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves, J. Comput. Phys., Volume 126 (1996), pp. 139-151

[5] P.-J.-F. Berkvens; P.-J. Zandbergen Nonlinear reaction forces on oscillating bodies by a time-domain panel method, J. Ship Res., Volume 40 (1996), pp. 288-302

[6] P.-J.-F. Berkvens, Floating bodies interacting with water waves; Development of a time-domain panel method, Ph.D. thesis, Twente University, Enschede, Netherlands, 1998

[7] P. Ferrant Fully non-linear interactions of long-crested wave packets with a three-dimensional body, 22nd Symp. on Naval Hydrodynamics, Washington, USA, 1998

[8] D.-G. Dommermuth; D.-K.-P. Yue Numerical simulations of nonlinear axisymmetric flows with a free surface, J. Fluid Mech., Volume 178 (1987), pp. 195-219

[9] J.-H. Park; A. Troesch Numerical modeling of short-time scale nonlinear water waves generated by large vertical motions of non-wallsided bodies, 19th Symp. on Naval Hydrodynamics, Seoul, South Korea, 1992

[10] W.-C. Webster The flow about arbitrary 3D smooth bodies, J. Ship Res., Volume 10 (1975), pp. 206-218

[11] W.-W. Schultz; S.-W. Hong Solution of potential problems using an over determined complex boundary integral method, J. Comput. Phys., Volume 84 (1989), pp. 414-440

[12] Y. Cao; W.-W. Schultz; R.-F. Beck Three-dimensional desingularized boundary integral methods for potential problems, Int. J. Numer. Methods Fluids, Volume 12 (1991), pp. 785-803

[13] F. Lalli On the accuracy of the desingularized boundary integral method in free surface flow problems, Int. J. Numer. Methods Fluids, Volume 25 (1997), pp. 1163-1184

[14] A. Rebeyrotte, Contribution à l'étude des effets non linéaires sur la surface libre au dessus de corps immergés en mouvement instationnaire, Thèse de doctorat de l'Université de Poitiers, 2003

[15] M. Ba; A. Rebeyrotte; M. Guilbaud Unsteady non linear flows around submerged body in water of finite depth, 6th Numerical Towing Tank Symposium (NuTTS'03), Rome, Italy, 2003

[16] B. Ponizy; M. Guilbaud; M. Ba Numerical computations and integrations of the wave resistance Green's function, Theor. Comput. Fluid Dynam., Volume 12 (1998) no. 3, pp. 179-194

[17] B.-K. King; R.-F. Beck; A.-R. Magee Seakeeping calculations with forward speed using time-domain analysis, 17th Symp. on Naval Hydrodynamics, La Hague, Pays-Bas, 1988

[18] T.-H. Havelock The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling disturbance, Proc. Roy. Soc. London A Math., Volume 81 (1908), pp. 398-430

Cited by Sources:

Comments - Policy