The ‘second-order’ nonlinear homogenization method (Ponte Castañeda, J. Mech. Phys. Solids 50 (2002) 737–757) is used to generate estimates of the Hashin–Shtrikman-type for the effective behavior of viscoplastic materials with isotropically distributed spherical pores or rigid particles. In the limiting case of an ideally plastic matrix with a dilute concentration of pores, the resulting estimates were found to exhibit a linear dependence on the porosity when the material is subjected to axisymmetric shear, but this dependence becomes singular for simple shear. In the process of this work, an alternative prescription for certain reference tensors used in the method is proposed, and shown to lead to more consistent estimates for the effective behavior than the earlier prescription.
On utilise la méthode d'homogénéisation non linéaire proposée par Ponte Castañeda (J. Mech. Phys. Solids 50 (2002) 737–757), dite du second ordre, pour générer des estimations du type Hashin–Shtrikman pour le comportement effectif des matériaux viscoplastiques contenant des pores et des particules rigides sphériques. Dans le cas limite d'une matrice parfaitement plastique à faible concentration de pores, les estimations trouvées présentent une dépendance linéaire de la porosité sous un chargement de cisaillement axisymmétrique ; cependant cette dépendance devient singulière sous cisaillement simple. Lors de ce travail, certaines limites de la formulation de la méthode initialement proposée dans la référence ci-dessus ont été identifiées. En conséquence, des alternatives ont été testées.
Accepted:
Published online:
Mots-clés : Milieux poreux, Homogénéisation, Comportement non linéaire, Plasticité parfaite
Martín Idiart 1, 2; Pedro Ponte Castañeda 1, 2
@article{CRMECA_2005__333_2_147_0, author = {Mart{\'\i}n Idiart and Pedro Ponte Casta\~neda}, title = {Second-order estimates for nonlinear isotropic composites with spherical pores and rigid particles}, journal = {Comptes Rendus. M\'ecanique}, pages = {147--154}, publisher = {Elsevier}, volume = {333}, number = {2}, year = {2005}, doi = {10.1016/j.crme.2004.12.001}, language = {en}, }
TY - JOUR AU - Martín Idiart AU - Pedro Ponte Castañeda TI - Second-order estimates for nonlinear isotropic composites with spherical pores and rigid particles JO - Comptes Rendus. Mécanique PY - 2005 SP - 147 EP - 154 VL - 333 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2004.12.001 LA - en ID - CRMECA_2005__333_2_147_0 ER -
Martín Idiart; Pedro Ponte Castañeda. Second-order estimates for nonlinear isotropic composites with spherical pores and rigid particles. Comptes Rendus. Mécanique, Volume 333 (2005) no. 2, pp. 147-154. doi : 10.1016/j.crme.2004.12.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.12.001/
[1] Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302
[2] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I – Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757
[3] Small-contrast perturbation expansions for the effective properties of nonlinear composites, C. R. Acad. Sci. Paris, Ser. II, Volume 317 (1993), pp. 1515-1522
[4] Nonlinear composites: a linearization procedure, exact to second-order in the contrast and for which the strain-energy and affine formulations coincide, C. R. Mecanique, Volume 332 (2004), pp. 693-700
[5] Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202
[6] Exact second-order estimates for the effective mechanical properties of nonlinear composites, J. Mech. Phys. Solids, Volume 44 (1996), pp. 827-862
[7] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[8] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II – Applications, J. Mech. Phys. Solids, Volume 50 (2002), pp. 759-782
[9] The continuum theory of plasticity on the macroscale and the microscale, J. Mater., Volume 1 (1966), pp. 873-910
[10] Yield criteria for porous media in plane strain: second-order estimates versus numerical results, C. R. Mecanique, Volume 330 (2002), pp. 741-747
Cited by Sources:
Comments - Policy