A model describing a macroscopic mechanism of the rupture of a free liquid film is introduced and analysed in the framework of the thin-film approximation. The process is shown to be driven by the surface-tension gradient arising when the rate of variation of the free-surface area due to external disturbances becomes comparable with the inverse surface-tension-relaxation time. The proposed mathematical description of the rupture phenomenon does not require the introduction of intermolecular forces into the equations of macroscopic fluid mechanics.
Dans le cadre de l'approximation de couches minces, on introduit et on analyse un modèle macroscopique de rupture d'une couche mince liquide. On démontre que le processus est alimenté par le gradient de la tension surfacique chaque fois quand le taux de variation de l'aire de surface libre provoqué par les perturbations extérieures devient comparable avec l'inverse du temps de relaxation de la tension surfacique. La description mathématique du phénomène de rupture proposée ici ne nécessite pas l'introduction explicite des forces intermoleculaires dans les équations de la mécanique des fluides macroscopique.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Couches minces, Transitions topologiques, Effet de Marangoni
Yulii D. Shikhmurzaev 1
@article{CRMECA_2005__333_3_205_0, author = {Yulii D. Shikhmurzaev}, title = {Macroscopic mechanism of rupture of free liquid films}, journal = {Comptes Rendus. M\'ecanique}, pages = {205--210}, publisher = {Elsevier}, volume = {333}, number = {3}, year = {2005}, doi = {10.1016/j.crme.2004.12.002}, language = {en}, }
Yulii D. Shikhmurzaev. Macroscopic mechanism of rupture of free liquid films. Comptes Rendus. Mécanique, Volume 333 (2005) no. 3, pp. 205-210. doi : 10.1016/j.crme.2004.12.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.12.002/
[1] Nonlinear rupture of free films, Phys. Fluids A, Volume 5 (1993), pp. 1117-1122
[2] Nonlinear stability and rupture of ultrathin free films, Phys. Fluids, Volume 7 (1995), pp. 1832-1840
[3] The moving contact line on a smooth solid surface, Int. J. Multiphase Flow, Volume 19 (1993) no. 4, pp. 589-610
[4] Spreading of drops on solid surfaces in a quasi-static regime, Phys. Fluids, Volume 9 (1997) no. 2, pp. 266-275
[5] Dynamic wetting by liquids of different viscosity, J. Colloid Interf. Sci., Volume 253 (2002), pp. 196-202
[6] The Scientific Papers of J. Willard Gibbs, vol. 1, Longmans, Green, New York, 1928
[7] Surface thermodynamics, J. Colloid Interf. Sci., Volume 58 (1977) no. 3, pp. 498-510
[8] Y.D. Shikhmurzaev, Capillary breakup of liquid threads: a singularity-free solution, IMA J. Appl. Math., accepted for publication
Cited by Sources:
Comments - Policy