Vortical structure identification has more recently been applied in the study of the transport of vortical structures in low Reynolds number three-dimensional complex geometry flows. An important issue in this identification procedure is to choose an appropriate cut-off value which takes into consideration the finite precision vortex interfaces. This cut-off choice is studied in this Note and applied to an external flow around a curved cylinder. The vortex identification technique at different cut-off values is compared to the threshold of the vorticity field showing the efficiency of choosing the optimal tolerance gap. The computations are performed with a fully three-dimensional spectral/hp element method.
Ce travail est consacré à l'identification des structures cohérentes présentes dans l'écoulement tridimensionnel d'un fluide visqueux aux bas nombres de Reynolds avec des géométries complexes. Une des issues importantes de ce processus d'identification est le besoin de spécifier un seuil numérique pour tenir compte des limites de précision de ce genre de calcul, en ce qui concerne l'interface des structures identifiées. Dans ce travail, ce seuil a été étudié et appliqué à un écoulement externe autour de tuyaux courbés. Les choix sont ensuite comparés aux résultats de la méthode du seuil de la vorticité mettant en évidence l'importance du choix approprié d'un seuil optimal. Tous les calculs sont effectués par une méthode tridimensionnelle du type ‘spectral/hp element’.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Identification des structures cohérentes
Anthi Miliou 1; Iraj Mortazavi 2; Spencer Sherwin 1
@article{CRMECA_2005__333_3_211_0, author = {Anthi Miliou and Iraj Mortazavi and Spencer Sherwin}, title = {Cut-off analysis of coherent vortical structure identification in a three-dimensional external flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {211--217}, publisher = {Elsevier}, volume = {333}, number = {3}, year = {2005}, doi = {10.1016/j.crme.2004.09.022}, language = {en}, }
TY - JOUR AU - Anthi Miliou AU - Iraj Mortazavi AU - Spencer Sherwin TI - Cut-off analysis of coherent vortical structure identification in a three-dimensional external flow JO - Comptes Rendus. Mécanique PY - 2005 SP - 211 EP - 217 VL - 333 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2004.09.022 LA - en ID - CRMECA_2005__333_3_211_0 ER -
%0 Journal Article %A Anthi Miliou %A Iraj Mortazavi %A Spencer Sherwin %T Cut-off analysis of coherent vortical structure identification in a three-dimensional external flow %J Comptes Rendus. Mécanique %D 2005 %P 211-217 %V 333 %N 3 %I Elsevier %R 10.1016/j.crme.2004.09.022 %G en %F CRMECA_2005__333_3_211_0
Anthi Miliou; Iraj Mortazavi; Spencer Sherwin. Cut-off analysis of coherent vortical structure identification in a three-dimensional external flow. Comptes Rendus. Mécanique, Volume 333 (2005) no. 3, pp. 211-217. doi : 10.1016/j.crme.2004.09.022. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.09.022/
[1] Flow-Induced Vibration, Van Nostrand–Reinhold, 1977
[2] The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D, Volume 48 (1991), pp. 273-294
[3] Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence, Phys. Fluids, Volume 13 (2001), pp. 3365-3385
[4] Vortex dynamics over a dihedral plane in a transitional slightly compressible flow: a computational study, Eur. J. Mech. B Fluids, Volume 20 (2001), pp. 603-626
[5] On the identification of a vortex, J. Fluid Mech., Volume 285 (1995), pp. 69-94
[6] On coherent-vortex identification in turbulence, J. Turbulence, Volume 1 (2000), pp. 1-22
[7] G. Haller, An objective definition of a vortex, submitted for publication
[8] On the effectiveness and limitations of local criteria for the identification of a vortex, Eur. J. Mech. B Fluids, Volume 18 (1999), pp. 261-282
[9] Multigrid solution of the 3-D compressible Euler equations on unstructured tetrahedral grids, Int. J. Numer. Methods Engrg., Volume 36 (1993), pp. 1029-1044
[10] Spectral/hp Element Methods for CFD, Oxford University Press, 1999
[11] High-order splitting methods for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 97 (1991), pp. 414-443
[12] Identification of concentrated structures in slightly compressible two-dimensional flows, C. R. Acad. Sci. Paris, Ser. IIb, Volume 329 (2001) no. 9, pp. 693-699
[13] On the “Weiss criterion” in two-dimensional turbulence, Physica D, Volume 73 (1994), pp. 17-30
[14] Tetrahedral hp finite elements: algorithms and flow solutions, J. Comput. Phys., Volume 124 (1996), pp. 14-45
Cited by Sources:
Comments - Policy