Comptes Rendus
Freezing and thawing porous media: experimental study with a dielectric capacitive method
Comptes Rendus. Mécanique, Volume 333 (2005) no. 5, pp. 425-430.

A capacitive sensor-based apparatus has been used to study the ice/water phase change in consolidated porous media subjected to freezing and thawing. This technique relies on the dielectric properties of water, ice, air, and the mineral substrate in the radio-frequency range. It gives directly the freezing and thawing temperature depressions and indirectly provides an estimation of pore size distribution through the Gibbs–Thomson relation. It also holds good promise for evaluating the amount of liquid water in frozen porous media by combining drying and freezing tests.

À l'aide d'un dispositif de sonde capacitive, on étudie le changement de phase eau/glace dans des milieux poreux consolidés soumis au gel et dégel. Cette technique exploite les propriétés diélectriques de l'eau, de la glace, de l'air, et du substrat minéral dans la gamme des fréquences radio. Elle permet d'obtenir directement les abaissements des températures de solidification et de fusion et indirectement la distribution des tailles de pores via la relation de Gibbs–Thomson. Elle devrait aussi fournir un moyen d'évaluer la teneur en eau liquide dans un milieu poreux en combinant un test en séchage et en gel.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2005.01.007
Keywords: Porous media, Freezing, Thawing, Unfrozen water, Supercooling, Capacitive sensor, Dielectric, Cement
Mot clés : Milieux poreux, Gel, Dégel, Eau non-gelée, Surfusion, Capteur capacitif, Diélectrique, Ciment

Teddy Fen-Chong 1; Antonin Fabbri 1

1 Institut Navier, LMSGC, 2 allée Kepler, 77420 Champs-sur-Marne, France
@article{CRMECA_2005__333_5_425_0,
     author = {Teddy Fen-Chong and Antonin Fabbri},
     title = {Freezing and thawing porous media: experimental study with a dielectric capacitive method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {425--430},
     publisher = {Elsevier},
     volume = {333},
     number = {5},
     year = {2005},
     doi = {10.1016/j.crme.2005.01.007},
     language = {en},
}
TY  - JOUR
AU  - Teddy Fen-Chong
AU  - Antonin Fabbri
TI  - Freezing and thawing porous media: experimental study with a dielectric capacitive method
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 425
EP  - 430
VL  - 333
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2005.01.007
LA  - en
ID  - CRMECA_2005__333_5_425_0
ER  - 
%0 Journal Article
%A Teddy Fen-Chong
%A Antonin Fabbri
%T Freezing and thawing porous media: experimental study with a dielectric capacitive method
%J Comptes Rendus. Mécanique
%D 2005
%P 425-430
%V 333
%N 5
%I Elsevier
%R 10.1016/j.crme.2005.01.007
%G en
%F CRMECA_2005__333_5_425_0
Teddy Fen-Chong; Antonin Fabbri. Freezing and thawing porous media: experimental study with a dielectric capacitive method. Comptes Rendus. Mécanique, Volume 333 (2005) no. 5, pp. 425-430. doi : 10.1016/j.crme.2005.01.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.01.007/

[1] M. Brun; A. Lallemand; J.F. Quinson; C. Eyraud A new method for the simultaneous determination of the size and shape of pores: the thermoporometry, Thermochim. Acta, Volume 21 (1977), pp. 59-88

[2] G.W. Scherer Freezing gels, J. Non-Crystalline Solids, Volume 155 (1993), pp. 1-25

[3] J.G. Dash; H.-Y. Fu; J.S. Wettlaufer The premelting of ice and its environmental consequences, Rep. Prog. Phys., Volume 58 (1995), pp. 115-167

[4] K. Watanabe; M. Mizogucchi Amount of unfrozen water in frozen porous media saturated with solution, Cold Reg. Sci. Technol., Volume 34 (2002), pp. 103-110

[5] T. Kozlowski A comprehensive method of determining the soil unfrozen water curves, 1. Application of the term of convolution, Cold Reg. Sci. Technol., Volume 36 (2003), pp. 71-79

[6] J.F. Thimus; J. Aguirre-Puente; F. Cohen-Tenoudji Determination of unfrozen water content of an overconsolidated clay down to −160 °C by sonic approaches – comparison with classical methods (Yu; Wang, eds.), Ground Freezing 91, Balkema, Rotterdam, 1991, pp. 83-88

[7] E.J.A. Spaans; J.M. Baker Examining the use of TDR for measuring liquid water content in frozen soils, Water Resour. Res., Volume 31 (1995), pp. 2917-2925

[8] D.H. Bager; E.J. Sellevold Ice formation in hardened cement paste, part II: drying and resaturation on room temperature cured pastes, Cement Concrete Res., Volume 16 (1986), pp. 835-844

[9] J. Kaufmann, Experimental identification of damage mechanisms in cementitious porous materials on phase transition of pore solution under frost deicing salt attack, PhD thesis, École Polytechnique Fédérale de Lausanne, Ecublens, CH-1015 Lausanne, 1999, PhD thesis no 2037

[10] S. Béjaoui; E. Revertégat; J.P. Bournazel Mécanismes de formation de la glace au sein des pâtes de ciment et des bétons, Revue Française de Génie Civil, Volume 6 (2002), pp. 1309-1332

[11] B. Zuber, Vers une modélisation du comportement des matériaux cimentaires exposés au gel, PhD thesis, Université de Laval, Québec (Canada) & École Normale Supérieure de Cachan (France), 17 December 2002

[12] T. Fen-Chong; A. Fabbri; J.P. Guilbaud; O. Coussy Détermination of liquid water content and dielectric constant in porous media by the capacitive method, C. R. Mecanique, Volume 332 (2004), pp. 639-645

[13] R.P. Auty; R.H. Cole Dielectric properties of ice and solid D20, J. Chem. Phys., Volume 20 (1952) no. 8, pp. 1309-1314

[14] G.P. Johari; E. Whalley The dielectric properties of ice Ih in the range 272–133 K, J. Chem. Phys., Volume 75 (1981) no. 3, pp. 1333-1340

[15] U. Kaatze The dielectric properties of water in its different states of interaction, J. Solution Chem., Volume 26 (1997) no. 11, pp. 1049-1112

[16] V.F. Petrenko; R.W. Whitworth Physics of Ice, Oxford University Press, 1999

[17] Handbook of Chemistry and Physics 2001–2002 (D.R. Lide, ed.), CRC Press, 2001

[18] G.W. Scherer Crystallization in pores, Cement Concrete Res., Volume 29 (1999), pp. 1347-1358

Cited by Sources:

Comments - Policy