Comptes Rendus
An optimality condition on the minimum energy threshold in subcritical instabilities
Comptes Rendus. Mécanique, Volume 333 (2005) no. 4, pp. 331-336.

For flows subject to subcritical instabilities the stability of the basic flow can be guaranteed only for perturbations of energy lower than a critical threshold δ. The computation of this threshold for the Navier–Stokes equations is still out of reach. More surprisingly, this computation has not been attempted for low dimensional models of subcritical transition. In this Note guidelines are provided for the computation of the minimum energy threshold δ and of the corresponding nonlinear optimal perturbations. In particular it is demonstrated that nonlinear optimal perturbations are constrained by the requirement that they must satisfy a local minimum condition. These results are applied to the analysis of four-dimensional models proposed in F. Waleffe, Phys. Fluids 7 (1995) and Phys. Fluids 9 (1997).

Dans le cas d'instabilité sous-critique, la stabilité de l'écoulement de base peut être garantie seulement pour des perturbations d'énergie inférieure au seuil critique δ. Le calcul direct de ce seuil est inaccessible pour les équations de Navier–Stokes. Plus surprenant est le fait que ce calcul n'a pas été tenté pour des modèles de basse dimension de transition sous-critique. Dans cette Note des indications générales sont fournies pour le calcul de δ et des perturbations non linéaires optimales associées. Notamment, nous démontrons que les perturbations non linéaires optimales doivent satisfaire une condition de minimum local. Ces résultats sont appliqués à l'analyse de systèmes à quatre dimensions proposés in F. Waleffe, Phys. Fluids 7 (1995) et Phys. Fluids 9 (1997).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2005.02.002
Keywords: Fluid mechanics, Instability, Dynamical systems, Optimal perturbations
Mot clés : Mécanique des fluides, Instabilité, Systèmes dynamiques, Perturbations optimales

Carlo Cossu 1

1 Laboratoire d'hydrodynamique (LadHyX), École polytechnique – CNRS, 91128 Palaiseau cedex, France
@article{CRMECA_2005__333_4_331_0,
     author = {Carlo Cossu},
     title = {An optimality condition on the minimum energy threshold in subcritical instabilities},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {331--336},
     publisher = {Elsevier},
     volume = {333},
     number = {4},
     year = {2005},
     doi = {10.1016/j.crme.2005.02.002},
     language = {en},
}
TY  - JOUR
AU  - Carlo Cossu
TI  - An optimality condition on the minimum energy threshold in subcritical instabilities
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 331
EP  - 336
VL  - 333
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2005.02.002
LA  - en
ID  - CRMECA_2005__333_4_331_0
ER  - 
%0 Journal Article
%A Carlo Cossu
%T An optimality condition on the minimum energy threshold in subcritical instabilities
%J Comptes Rendus. Mécanique
%D 2005
%P 331-336
%V 333
%N 4
%I Elsevier
%R 10.1016/j.crme.2005.02.002
%G en
%F CRMECA_2005__333_4_331_0
Carlo Cossu. An optimality condition on the minimum energy threshold in subcritical instabilities. Comptes Rendus. Mécanique, Volume 333 (2005) no. 4, pp. 331-336. doi : 10.1016/j.crme.2005.02.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.02.002/

[1] D.D. Joseph Stability of Fluid Motions, Springer Tracts in Natural Philosophy, vol. 27, Springer, New York, 1976

[2] P.J. Schmid; D.S. Henningson Stability and Transition in Shear Flows, Springer, New York, 2001

[3] L.N. Trefethen; A.E. Trefethen; S.C. Reddy; T.A. Driscoll A new direction in hydrodynamic stability: beyond eigenvalues, Science, Volume 261 (1993), pp. 578-584

[4] J.S. Baggett; L.N. Trefethen Low-dimensional models of subcritical transition to turbulence, Phys. Fluids, Volume 9 (1997), pp. 1043-1053

[5] B. Hof; A. Juel; T. Mullin Scaling of the turbulence transition threshold in a pipe, Phys. Rev. Lett., Volume 91 (1997), p. 244502

[6] K.M. Butler; B.F. Farrell Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, Volume 4 (1992), pp. 1637-1650

[7] F. Waleffe Transition in shear flows. Nonlinear normality versus non-normal linearity, Phys. Fluids, Volume 7 (1995), p. 3060

[8] F. Waleffe On a self-sustaining process in shear flows, Phys. Fluids, Volume 9 (1997), pp. 883-900

Cited by Sources:

Comments - Policy