The aim of this Note is to predict by means of large eddy simulations the three-dimensional structures and secondary mass and heat fluxes which develop within a heated curved duct, for applications to rocket engines cooling channels. We show the existence of unsteady Görtler-type vortices above the concave wall, as well as intense secondary vortices taking the shape of two quasi-steady counter-rotating cells of Ekman type close to the convex wall. These cells control heat exchanges. They induce ejections and sweeps close to the convex wall when it is heated. In this case the Nusselt number undergoes strong transverse fluctuations which might induce material alterations.
L'objectif de cette Note est de prédire par simulation des grandes échelles les structures tridimensionnelles et les flux secondaires de masse et de chaleur se développant dans un conduit courbe chauffé, pour des applications aux canaux de refroidissement des moteurs de fusée. On montre l'existence de tourbillons instationnaires de type Görtler sur la paroi concave, ainsi que des tourbillons secondaires intenses formant deux cellules contra-rotatives quasi-stationnaires de type Ekman près de la paroi convexe. Ces cellules contrôlent les échanges thermiques. Elles induisent des mécanismes d'ejections et de balayages près de la paroi convexe quand elle est chauffée. Ceci provoque de fortes variations transverses du nombre de Nusselt qui pourraient conduire à une dégradation des matériaux.
Accepted:
Published online:
Mot clés : Turbulence, Transferts thermiques, Mécanique des fluides numérique
Cécile Münch 1; Olivier Métais 1
@article{CRMECA_2005__333_7_574_0, author = {C\'ecile M\"unch and Olivier M\'etais}, title = {Turbulence in cooling channels of rocket engines: {Large} {Eddy} {Simulations}}, journal = {Comptes Rendus. M\'ecanique}, pages = {574--579}, publisher = {Elsevier}, volume = {333}, number = {7}, year = {2005}, doi = {10.1016/j.crme.2005.06.001}, language = {en}, }
Cécile Münch; Olivier Métais. Turbulence in cooling channels of rocket engines: Large Eddy Simulations. Comptes Rendus. Mécanique, Volume 333 (2005) no. 7, pp. 574-579. doi : 10.1016/j.crme.2005.06.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.06.001/
[1] Turbulent flow in a strongly curved U-bend and downstream tangent of square cross-sections, Int. J. PhysicoChemical Hydrodynamics, Volume 4 (1983) no. 3, pp. 243-269
[2] Origin and decay of longitudinal vortices in developing flow in a curved rectangular duct, J. Fluids Engrg., Volume 116 (1994), pp. 45-52
[3] A. Silva Lopes, U. Piomelli, J.M.L.M. Palma, Large eddy simulation of the flow in an S-duct, AIAA 0964, 2003
[4] Heat transfer enhancement by Görtler instability, Int. J. Heat Fluid Flow, Volume 23 (2002), pp. 194-204
[5] Filtrage de Favre et macro-température en simulation des grande séchelles de la turbulence compressible, C. R. Acad. Sci. Paris Ser. IIb, Volume 329 (2001), pp. 363-368
[6] New trends in large eddy simulations of turbulence, Ann. Rev. Fluid Mech., Volume 28 (1996), pp. 45-82
[7] C.A. Kennedy, M.H. Carpenter, Comparison of several numerical Methods for simulation of compressible shear layers, NASA technical paper, Paper 3484, 1997
[8] Large-eddy simulation of the turbulent flow through a heated square duct, J. Fluid Mech., Volume 453 (2002), pp. 201-238
[9] Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., Volume 101 (1992), pp. 104-129
[10] J. Hunt, A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, Center of Turbulence Research, CTR-S88, 1988
Cited by Sources:
Comments - Policy