[Modèles du premier ordre et fermeture de l'équation de conservation de masse dans la théorie mathématique du trafic routier]
Ce article propose une revue et une analyse critique des modèles hydrodynamiques du trafic routier obtenus par fermeture de l'équation de conservation de la masse. La fermeture est obtenue à partir de modèles phénoménologiques reliant les profils des densités locales à la vitesse moyenne locale. Différents modèles sont décrits et discutés aussi bien dans le cas déterministe que stochastique. L'analyse est développée en vue d'applications aux simulations des modèles de trafic pour les réseaux routiers. Des perspectives de recherche, basées sur notre analyse, sont proposées dans la dernière partie de ce travail.
This article deals with a review and critical analysis of first order hydrodynamic models of vehicular traffic flow obtained by the closure of the mass conservation equation. The closure is obtained by phenomenological models suitable to relate the local mean velocity to local density profiles. Various models are described and critically analyzed in the deterministic and stochastic case. The analysis is developed in view of applications of the models to traffic flow simulations for networks of roads. Some research perspectives are derived from the above analysis and proposed in the last part of the paper.
Mots-clés : Milieux continus, Modèles de trafic routier, Équation de conservation de la masse, Modèles continus, Nonlinéarité
Nicola Bellomo 1 ; Vincenzo Coscia 2
@article{CRMECA_2005__333_11_843_0, author = {Nicola Bellomo and Vincenzo Coscia}, title = {First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {843--851}, publisher = {Elsevier}, volume = {333}, number = {11}, year = {2005}, doi = {10.1016/j.crme.2005.09.004}, language = {en}, }
TY - JOUR AU - Nicola Bellomo AU - Vincenzo Coscia TI - First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow JO - Comptes Rendus. Mécanique PY - 2005 SP - 843 EP - 851 VL - 333 IS - 11 PB - Elsevier DO - 10.1016/j.crme.2005.09.004 LA - en ID - CRMECA_2005__333_11_843_0 ER -
%0 Journal Article %A Nicola Bellomo %A Vincenzo Coscia %T First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow %J Comptes Rendus. Mécanique %D 2005 %P 843-851 %V 333 %N 11 %I Elsevier %R 10.1016/j.crme.2005.09.004 %G en %F CRMECA_2005__333_11_843_0
Nicola Bellomo; Vincenzo Coscia. First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow. Comptes Rendus. Mécanique, Volume 333 (2005) no. 11, pp. 843-851. doi : 10.1016/j.crme.2005.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.09.004/
[1] Experimental properties of complexity in traffic flow, Phys. Rev. E, Volume 53 (1996), pp. 4275-4278
[2] Experimental features of self-organization in traffic flow, Phys. Rev. Lett., Volume 81 (1998), pp. 3797-3800
[3] Synchronized flow as a new traffic phase and related problems of traffic flow, Math. Comput. Modelling, Volume 35 (2002), pp. 481-508
[4] Mathematical models for vehicular traffic, Surveys Math. Ind., Volume 6 (1996), pp. 215-239
[5] Kinetic traffic flow models (N. Bellomo; M. Pulvirenti, eds.), Modeling in Applied Sciences: A Kinetic Theory Approach, Birkhäuser, Boston, 2000
[6] Traffic and related self-driven many-particle systems, Rev. Mod. Phys., Volume 73 (2001), pp. 1067-1141
[7] On the mathematical theory of vehicular traffic flow I—Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., Volume 12 (2002), pp. 1801-1844
[8] Limit of a collection of dynamical systems: an application to modelling the flow of traffic, Math. Mod. Meth. Appl. Sci., Volume 12 (2002), pp. 1381-1400
[9] From experiments to hydrodynamic traffic flow models. I—Modelling and parameter identification, Math. Comput. Modelling, Volume 37 (2003), pp. 109-119
[10] On a diffusively corrected kinematic-wave traffic flow model with changing road surface conditions, Math. Mod. Meth. Appl. Sci., Volume 13 (2003), pp. 1767-1800
[11] Simplified dynamics and optimization of large scale networks, Math. Mod. Meth. Appl. Sci., Volume 14 (2004), pp. 579-602
[12] Node and link models for network traffic flow simulation, Math. Comput. Modelling, Volume 35 (2002), pp. 643-656
[13] Modelling vehicular traffic flow on networks using macroscopic models (F. Vilsmeier et al., eds.), Finite Volumes for Complex Applications—Problems and Perspectives, Duisburg Press, Duisburg, 1999
[14] On kinematic waves. I: Flow movement in long rivers. II: A theory of traffic flow on long crowded roads, Proc. Royal Soc. Edinburgh A, Volume 229 (1955), pp. 281-345
[15] H.J. Payne, Models of Freeway Traffic and Control, Simulation Council, New York, 1971
[16] Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems, Math. Comput. Modelling, Volume 29 (1999), pp. 83-95
[17] Requiem for second order fluid approximations of traffic flow, Transp. Res. B, Volume 29 (1995), pp. 277-286
[18] Resurrection of “second order models” of traffic flow, SIAM J. Appl. Math., Volume 60 (2000), pp. 916-938
[19] Hydrodynamic models of traffic flow—drivers behavior and nonlinear diffusion, Math. Comput. Modelling, Volume 31 (2000), pp. 1-8
[20] On the closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow, C. R. Mécanique, Volume 332 (2004), pp. 585-590
[21] From the modelling of driver's behaviour to hydrodynamic models and problems of traffic flow, Nonlinear Anal., Volume 3 (2002), pp. 339-363
[22] Boundary value steady solutions of a class of hydrodynamic models for vehicular traffic flow models, Math. Comput. Modelling, Volume 38 (2003), pp. 367-383
[23] Traffic Flow Fundamentals, Prentice Hall, Englewood Cliffs, 1990
[24] Nonlinear models of traffic flow. New frameworks of mathematical kinetic theory, C. R. Mécanique, Volume 331 (2003), pp. 817-822
[25] Aggregation of a class of interconnected linear dynamical systems, Systems Control Lett., Volume 43 (2001), pp. 387-401
[26] Aggregation of a class of large scale interconnected, nonlinear dynamical systems, Math. Problems Engrg., Volume 7 (2001), pp. 379-392
- Computational Analysis of Local Fractional LWR Model Occurring in a Fractal Vehicular Traffic Flow, Fractal and Fractional, Volume 6 (2022) no. 8, p. 426 | DOI:10.3390/fractalfract6080426
- Diffusion–convection reaction equations with sign-changing diffusivity and bistable reaction term, Nonlinear Analysis: Real World Applications, Volume 67 (2022), p. 103579 | DOI:10.1016/j.nonrwa.2022.103579
- Wavefronts in Traffic Flows and Crowds Dynamics, Anomalies in Partial Differential Equations, Volume 43 (2021), p. 167 | DOI:10.1007/978-3-030-61346-4_8
- A macroscopic traffic flow model that includes driver sensitivity to the number of free spaces ahead, Transportmetrica B: Transport Dynamics, Volume 8 (2020) no. 1, p. 290 | DOI:10.1080/21680566.2017.1377647
- Numerical identification of constitutive functions in scalar nonlinear convection–diffusion equations with application to batch sedimentation, Applied Numerical Mathematics, Volume 95 (2015), p. 154 | DOI:10.1016/j.apnum.2014.04.002
- Fractal Dynamical Model of Vehicular Traffic Flow within the Local Fractional Conservation Laws, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/635760
- Boundary conditions for first order macroscopic models of vehicular traffic in the presence of tollgates, Applied Mathematics and Computation, Volume 234 (2014), p. 260 | DOI:10.1016/j.amc.2014.02.038
- Modelling and analysis of synchronised material flow with fluid dynamics, Physica A: Statistical Mechanics and its Applications, Volume 393 (2014), p. 404 | DOI:10.1016/j.physa.2013.08.065
- Vehicular Traffic: A Review of Continuum Mathematical Models, Encyclopedia of Complexity and Systems Science (2013), p. 1 | DOI:10.1007/978-3-642-27737-5_576-3
- The Supply Chain Triangle: How Synchronisation, Stability, and Productivity of Material Flows Interact, Modelling and Simulation in Engineering, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/981710
- Qualitative analysis of some PDE models of traffic flow, Networks Heterogeneous Media, Volume 8 (2013) no. 3, p. 773 | DOI:10.3934/nhm.2013.8.773
- Structured first order conservation models for pedestrian dynamics, Networks Heterogeneous Media, Volume 8 (2013) no. 4, p. 985 | DOI:10.3934/nhm.2013.8.985
- From vehicle–driver behaviors to first order traffic flow macroscopic models, Applied Mathematics Letters, Volume 25 (2012) no. 12, p. 2162 | DOI:10.1016/j.aml.2012.05.015
- TOWARDS THE MODELING OF VEHICULAR TRAFFIC AS A COMPLEX SYSTEM: A KINETIC THEORY APPROACH, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. supp01 | DOI:10.1142/s0218202511400033
- Vehicular Traffic: A Review of Continuum Mathematical Models, Mathematics of Complexity and Dynamical Systems (2012), p. 1748 | DOI:10.1007/978-1-4614-1806-1_112
- Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications, Applied Mathematical Modelling, Volume 35 (2011) no. 1, p. 426 | DOI:10.1016/j.apm.2010.07.007
- On the coupling of steady and adaptive velocity grids in vehicular traffic modelling, Applied Mathematics Letters, Volume 24 (2011) no. 2, p. 149 | DOI:10.1016/j.aml.2010.08.035
- On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives, SIAM Review, Volume 53 (2011) no. 3, p. 409 | DOI:10.1137/090746677
- On the modeling of crowd dynamics: An overview and research perspectives, SeMA Journal, Volume 54 (2011) no. 1, p. 25 | DOI:10.1007/bf03322586
- ROAD NETWORKS WITH PHASE TRANSITIONS, Journal of Hyperbolic Differential Equations, Volume 07 (2010) no. 01, p. 85 | DOI:10.1142/s0219891610002025
- Some theoretical reasonings on the use and abuse of empirical data for vehicular traffic modelling, Mathematical and Computer Modelling, Volume 52 (2010) no. 5-6, p. 715 | DOI:10.1016/j.mcm.2010.04.023
- Conservation laws on complex networks, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 5, p. 1925 | DOI:10.1016/j.anihpc.2009.04.001
- Vehicular Traffic: A Review of Continuum Mathematical Models, Encyclopedia of Complexity and Systems Science (2009), p. 9727 | DOI:10.1007/978-0-387-30440-3_576
- Crowd–structure interaction in footbridges: Modelling, application to a real case-study and sensitivity analyses, Journal of Sound and Vibration, Volume 323 (2009) no. 1-2, p. 475 | DOI:10.1016/j.jsv.2008.12.015
- Critical analysis and perspectives on the hydrodynamic approach for the mathematical theory of vehicular traffic, Mathematical and Computer Modelling, Volume 50 (2009) no. 3-4, p. 526 | DOI:10.1016/j.mcm.2009.03.007
- On the derivation of the velocity and fundamental traffic flow diagram from the modelling of the vehicle–driver behaviors, Mathematical and Computer Modelling, Volume 50 (2009) no. 7-8, p. 1107 | DOI:10.1016/j.mcm.2009.06.004
- Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux, Journal of Engineering Mathematics, Volume 60 (2008) no. 3-4, p. 365 | DOI:10.1007/s10665-007-9162-6
- FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. supp01, p. 1217 | DOI:10.1142/s0218202508003017
- Optimization versus randomness for car traffic regulation, Physical Review E, Volume 78 (2008) no. 2 | DOI:10.1103/physreve.78.026113
- , 2007 IEEE International Conference on Grey Systems and Intelligent Services (2007), p. 1376 | DOI:10.1109/gsis.2007.4443498
- Hyperbolicity analysis of a class of dynamical systems modelling traffic flow, Applied Mathematics Letters, Volume 20 (2007) no. 8, p. 933 | DOI:10.1016/j.aml.2006.06.022
- On the mathematical theory of vehicular traffic flow II: Discrete velocity kinetic models, International Journal of Non-Linear Mechanics, Volume 42 (2007) no. 3, p. 411 | DOI:10.1016/j.ijnonlinmec.2006.02.008
- OPTIMIZATION OF TRAFFIC ON ROAD NETWORKS, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 10, p. 1587 | DOI:10.1142/s021820250700239x
- Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Mathematical and Computer Modelling, Volume 45 (2007) no. 3-4, p. 252 | DOI:10.1016/j.mcm.2006.04.007
- On the velocity distribution at equilibrium in the mathematical theory of vehicular traffic flow, Applied Mathematics Letters, Volume 19 (2006) no. 9, p. 908 | DOI:10.1016/j.aml.2005.06.020
Cité par 35 documents. Sources : Crossref
Commentaires - Politique