Comptes Rendus
First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow
[Modèles du premier ordre et fermeture de l'équation de conservation de masse dans la théorie mathématique du trafic routier]
Comptes Rendus. Mécanique, Volume 333 (2005) no. 11, pp. 843-851.

Ce article propose une revue et une analyse critique des modèles hydrodynamiques du trafic routier obtenus par fermeture de l'équation de conservation de la masse. La fermeture est obtenue à partir de modèles phénoménologiques reliant les profils des densités locales à la vitesse moyenne locale. Différents modèles sont décrits et discutés aussi bien dans le cas déterministe que stochastique. L'analyse est développée en vue d'applications aux simulations des modèles de trafic pour les réseaux routiers. Des perspectives de recherche, basées sur notre analyse, sont proposées dans la dernière partie de ce travail.

This article deals with a review and critical analysis of first order hydrodynamic models of vehicular traffic flow obtained by the closure of the mass conservation equation. The closure is obtained by phenomenological models suitable to relate the local mean velocity to local density profiles. Various models are described and critically analyzed in the deterministic and stochastic case. The analysis is developed in view of applications of the models to traffic flow simulations for networks of roads. Some research perspectives are derived from the above analysis and proposed in the last part of the paper.

Publié le :
DOI : 10.1016/j.crme.2005.09.004
Keywords: Continuum mechanics, Traffic flow models, Mass conservation, Continuum models, Nonlinear sciences
Mots-clés : Milieux continus, Modèles de trafic routier, Équation de conservation de la masse, Modèles continus, Nonlinéarité

Nicola Bellomo 1 ; Vincenzo Coscia 2

1 Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
2 Dipartimento di Matematica, Università di Ferrara, Via Machiavelli 35, 44100 Ferrara, Italy
@article{CRMECA_2005__333_11_843_0,
     author = {Nicola Bellomo and Vincenzo Coscia},
     title = {First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {843--851},
     publisher = {Elsevier},
     volume = {333},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crme.2005.09.004},
     language = {en},
}
TY  - JOUR
AU  - Nicola Bellomo
AU  - Vincenzo Coscia
TI  - First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 843
EP  - 851
VL  - 333
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2005.09.004
LA  - en
ID  - CRMECA_2005__333_11_843_0
ER  - 
%0 Journal Article
%A Nicola Bellomo
%A Vincenzo Coscia
%T First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow
%J Comptes Rendus. Mécanique
%D 2005
%P 843-851
%V 333
%N 11
%I Elsevier
%R 10.1016/j.crme.2005.09.004
%G en
%F CRMECA_2005__333_11_843_0
Nicola Bellomo; Vincenzo Coscia. First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow. Comptes Rendus. Mécanique, Volume 333 (2005) no. 11, pp. 843-851. doi : 10.1016/j.crme.2005.09.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.09.004/

[1] B. Kerner; H. Rehborn Experimental properties of complexity in traffic flow, Phys. Rev. E, Volume 53 (1996), pp. 4275-4278

[2] B. Kerner Experimental features of self-organization in traffic flow, Phys. Rev. Lett., Volume 81 (1998), pp. 3797-3800

[3] B. Kerner Synchronized flow as a new traffic phase and related problems of traffic flow, Math. Comput. Modelling, Volume 35 (2002), pp. 481-508

[4] A. Klar; R.D. Küne; R. Wegener Mathematical models for vehicular traffic, Surveys Math. Ind., Volume 6 (1996), pp. 215-239

[5] A. Klar; R. Wegener Kinetic traffic flow models (N. Bellomo; M. Pulvirenti, eds.), Modeling in Applied Sciences: A Kinetic Theory Approach, Birkhäuser, Boston, 2000

[6] D. Helbing Traffic and related self-driven many-particle systems, Rev. Mod. Phys., Volume 73 (2001), pp. 1067-1141

[7] N. Bellomo; V. Coscia; M. Delitala On the mathematical theory of vehicular traffic flow I—Fluid dynamic and kinetic modeling, Math. Mod. Meth. Appl. Sci., Volume 12 (2002), pp. 1801-1844

[8] S. Darbha; K.R. Rajagopal Limit of a collection of dynamical systems: an application to modelling the flow of traffic, Math. Mod. Meth. Appl. Sci., Volume 12 (2002), pp. 1381-1400

[9] I. Bonzani; L. Mussone From experiments to hydrodynamic traffic flow models. I—Modelling and parameter identification, Math. Comput. Modelling, Volume 37 (2003), pp. 109-119

[10] R. Burger; K.H. Karlsen On a diffusively corrected kinematic-wave traffic flow model with changing road surface conditions, Math. Mod. Meth. Appl. Sci., Volume 13 (2003), pp. 1767-1800

[11] T. Herthy; A. Klar Simplified dynamics and optimization of large scale networks, Math. Mod. Meth. Appl. Sci., Volume 14 (2004), pp. 579-602

[12] V. Astarita Node and link models for network traffic flow simulation, Math. Comput. Modelling, Volume 35 (2002), pp. 643-656

[13] J.P. Lebaque; M. Khoshyaran Modelling vehicular traffic flow on networks using macroscopic models (F. Vilsmeier et al., eds.), Finite Volumes for Complex Applications—Problems and Perspectives, Duisburg Press, Duisburg, 1999

[14] M. Lighthill; J.B. Whitham On kinematic waves. I: Flow movement in long rivers. II: A theory of traffic flow on long crowded roads, Proc. Royal Soc. Edinburgh A, Volume 229 (1955), pp. 281-345

[15] H.J. Payne, Models of Freeway Traffic and Control, Simulation Council, New York, 1971

[16] E. De Angelis Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems, Math. Comput. Modelling, Volume 29 (1999), pp. 83-95

[17] C. Daganzo Requiem for second order fluid approximations of traffic flow, Transp. Res. B, Volume 29 (1995), pp. 277-286

[18] A. Aw; M. Rascle Resurrection of “second order models” of traffic flow, SIAM J. Appl. Math., Volume 60 (2000), pp. 916-938

[19] I. Bonzani Hydrodynamic models of traffic flow—drivers behavior and nonlinear diffusion, Math. Comput. Modelling, Volume 31 (2000), pp. 1-8

[20] V. Coscia On the closure of mass conservation equation and stability analysis in the mathematical theory of vehicular traffic flow, C. R. Mécanique, Volume 332 (2004), pp. 585-590

[21] N. Bellomo; A. Marasco; A. Romano From the modelling of driver's behaviour to hydrodynamic models and problems of traffic flow, Nonlinear Anal., Volume 3 (2002), pp. 339-363

[22] M.L. Bertotti; N. Bellomo Boundary value steady solutions of a class of hydrodynamic models for vehicular traffic flow models, Math. Comput. Modelling, Volume 38 (2003), pp. 367-383

[23] A.D. May Traffic Flow Fundamentals, Prentice Hall, Englewood Cliffs, 1990

[24] M. Delitala Nonlinear models of traffic flow. New frameworks of mathematical kinetic theory, C. R. Mécanique, Volume 331 (2003), pp. 817-822

[25] S. Darbha; K.R. Rajagopal Aggregation of a class of interconnected linear dynamical systems, Systems Control Lett., Volume 43 (2001), pp. 387-401

[26] S. Darbha; K.R. Rajagopal Aggregation of a class of large scale interconnected, nonlinear dynamical systems, Math. Problems Engrg., Volume 7 (2001), pp. 379-392

  • Ved Prakash Dubey; Devendra Kumar; Hashim M. Alshehri; Sarvesh Dubey; Jagdev Singh Computational Analysis of Local Fractional LWR Model Occurring in a Fractal Vehicular Traffic Flow, Fractal and Fractional, Volume 6 (2022) no. 8, p. 426 | DOI:10.3390/fractalfract6080426
  • Diego Berti; Andrea Corli; Luisa Malaguti Diffusion–convection reaction equations with sign-changing diffusivity and bistable reaction term, Nonlinear Analysis: Real World Applications, Volume 67 (2022), p. 103579 | DOI:10.1016/j.nonrwa.2022.103579
  • Andrea Corli; Luisa Malaguti Wavefronts in Traffic Flows and Crowds Dynamics, Anomalies in Partial Differential Equations, Volume 43 (2021), p. 167 | DOI:10.1007/978-3-030-61346-4_8
  • Ismael M. Pour; Habibollah Nassiri A macroscopic traffic flow model that includes driver sensitivity to the number of free spaces ahead, Transportmetrica B: Transport Dynamics, Volume 8 (2020) no. 1, p. 290 | DOI:10.1080/21680566.2017.1377647
  • S. Diehl Numerical identification of constitutive functions in scalar nonlinear convection–diffusion equations with application to batch sedimentation, Applied Numerical Mathematics, Volume 95 (2015), p. 154 | DOI:10.1016/j.apnum.2014.04.002
  • Long-Fei Wang; Xiao-Jun Yang; Dumitru Baleanu; Carlo Cattani; Yang Zhao Fractal Dynamical Model of Vehicular Traffic Flow within the Local Fractional Conservation Laws, Abstract and Applied Analysis, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/635760
  • M. Dolfin Boundary conditions for first order macroscopic models of vehicular traffic in the presence of tollgates, Applied Mathematics and Computation, Volume 234 (2014), p. 260 | DOI:10.1016/j.amc.2014.02.038
  • Florian Klug Modelling and analysis of synchronised material flow with fluid dynamics, Physica A: Statistical Mechanics and its Applications, Volume 393 (2014), p. 404 | DOI:10.1016/j.physa.2013.08.065
  • Benedetto Piccoli; Andrea Tosin Vehicular Traffic: A Review of Continuum Mathematical Models, Encyclopedia of Complexity and Systems Science (2013), p. 1 | DOI:10.1007/978-3-642-27737-5_576-3
  • Florian Klug The Supply Chain Triangle: How Synchronisation, Stability, and Productivity of Material Flows Interact, Modelling and Simulation in Engineering, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/981710
  • Tong Li Qualitative analysis of some PDE models of traffic flow, Networks Heterogeneous Media, Volume 8 (2013) no. 3, p. 773 | DOI:10.3934/nhm.2013.8.773
  • Dirk Hartmann; Isabella von Sivers Structured first order conservation models for pedestrian dynamics, Networks Heterogeneous Media, Volume 8 (2013) no. 4, p. 985 | DOI:10.3934/nhm.2013.8.985
  • M. Dolfin From vehicle–driver behaviors to first order traffic flow macroscopic models, Applied Mathematics Letters, Volume 25 (2012) no. 12, p. 2162 | DOI:10.1016/j.aml.2012.05.015
  • A. BELLOUQUID; E. DE ANGELIS; L. FERMO TOWARDS THE MODELING OF VEHICULAR TRAFFIC AS A COMPLEX SYSTEM: A KINETIC THEORY APPROACH, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. supp01 | DOI:10.1142/s0218202511400033
  • Benedetto Piccoli; Andrea Tosin Vehicular Traffic: A Review of Continuum Mathematical Models, Mathematics of Complexity and Dynamical Systems (2012), p. 1748 | DOI:10.1007/978-1-4614-1806-1_112
  • Luca Bruno; Andrea Tosin; Paolo Tricerri; Fiammetta Venuti Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications, Applied Mathematical Modelling, Volume 35 (2011) no. 1, p. 426 | DOI:10.1016/j.apm.2010.07.007
  • C. Bianca; V. Coscia On the coupling of steady and adaptive velocity grids in vehicular traffic modelling, Applied Mathematics Letters, Volume 24 (2011) no. 2, p. 149 | DOI:10.1016/j.aml.2010.08.035
  • Nicola Bellomo; Christian Dogbe On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives, SIAM Review, Volume 53 (2011) no. 3, p. 409 | DOI:10.1137/090746677
  • N. Bellomo; C. Bianca; V. Coscia On the modeling of crowd dynamics: An overview and research perspectives, SeMA Journal, Volume 54 (2011) no. 1, p. 25 | DOI:10.1007/bf03322586
  • RINALDO M. COLOMBO; PAOLA GOATIN; BENEDETTO PICCOLI ROAD NETWORKS WITH PHASE TRANSITIONS, Journal of Hyperbolic Differential Equations, Volume 07 (2010) no. 01, p. 85 | DOI:10.1142/s0219891610002025
  • I. Bonzani Some theoretical reasonings on the use and abuse of empirical data for vehicular traffic modelling, Mathematical and Computer Modelling, Volume 52 (2010) no. 5-6, p. 715 | DOI:10.1016/j.mcm.2010.04.023
  • Mauro Garavello; Benedetto Piccoli Conservation laws on complex networks, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 26 (2009) no. 5, p. 1925 | DOI:10.1016/j.anihpc.2009.04.001
  • Benedetto Piccoli; Andrea Tosin Vehicular Traffic: A Review of Continuum Mathematical Models, Encyclopedia of Complexity and Systems Science (2009), p. 9727 | DOI:10.1007/978-0-387-30440-3_576
  • Luca Bruno; Fiammetta Venuti Crowd–structure interaction in footbridges: Modelling, application to a real case-study and sensitivity analyses, Journal of Sound and Vibration, Volume 323 (2009) no. 1-2, p. 475 | DOI:10.1016/j.jsv.2008.12.015
  • I. Bonzani; L.M. Gramani Cumin Critical analysis and perspectives on the hydrodynamic approach for the mathematical theory of vehicular traffic, Mathematical and Computer Modelling, Volume 50 (2009) no. 3-4, p. 526 | DOI:10.1016/j.mcm.2009.03.007
  • I. Bonzani; L. Mussone On the derivation of the velocity and fundamental traffic flow diagram from the modelling of the vehicle–driver behaviors, Mathematical and Computer Modelling, Volume 50 (2009) no. 7-8, p. 1107 | DOI:10.1016/j.mcm.2009.06.004
  • Raimund Bürger; Ricardo Ruiz; Kai Schneider; Mauricio A. Sepúlveda Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux, Journal of Engineering Mathematics, Volume 60 (2008) no. 3-4, p. 365 | DOI:10.1007/s10665-007-9162-6
  • V. COSCIA; C. CANAVESIO FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS, Mathematical Models and Methods in Applied Sciences, Volume 18 (2008) no. supp01, p. 1217 | DOI:10.1142/s0218202508003017
  • A. Cascone; R. Manzo; B. Piccoli; L. Rarità Optimization versus randomness for car traffic regulation, Physical Review E, Volume 78 (2008) no. 2 | DOI:10.1103/physreve.78.026113
  • Liping Wu; Senfa Chen; Chunping Pang, 2007 IEEE International Conference on Grey Systems and Intelligent Services (2007), p. 1376 | DOI:10.1109/gsis.2007.4443498
  • Ida Bonzani Hyperbolicity analysis of a class of dynamical systems modelling traffic flow, Applied Mathematics Letters, Volume 20 (2007) no. 8, p. 933 | DOI:10.1016/j.aml.2006.06.022
  • V. Coscia; M. Delitala; P. Frasca On the mathematical theory of vehicular traffic flow II: Discrete velocity kinetic models, International Journal of Non-Linear Mechanics, Volume 42 (2007) no. 3, p. 411 | DOI:10.1016/j.ijnonlinmec.2006.02.008
  • CASCONE ANNUNZIATA; CIRO D'APICE; PICCOLI BENEDETTO; RARITÀ LUIGI OPTIMIZATION OF TRAFFIC ON ROAD NETWORKS, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 10, p. 1587 | DOI:10.1142/s021820250700239x
  • Fiammetta Venuti; Luca Bruno; Nicola Bellomo Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Mathematical and Computer Modelling, Volume 45 (2007) no. 3-4, p. 252 | DOI:10.1016/j.mcm.2006.04.007
  • I. Bonzani; M. Ferrero; L. Mussone On the velocity distribution at equilibrium in the mathematical theory of vehicular traffic flow, Applied Mathematics Letters, Volume 19 (2006) no. 9, p. 908 | DOI:10.1016/j.aml.2005.06.020

Cité par 35 documents. Sources : Crossref

Commentaires - Politique