The transport of granular material often generates severe damage. Understanding the correlation between the friction coefficient, particle geometry and wear mechanisms is of primary importance for materials undergoing abrasive wear. The aim of this study is to investigate the effect of particle geometry on wear mechanisms and the friction coefficient. Numerical and analytical simulations and experimental results have been compared. The process to be studied is the scratch made by a rigid cone with different attack angles on a 5xxx aluminium alloy (Al–Mg) flat surface. A scratch test was used and the wear mechanisms were observed for different attack angles. A numerical study with a finite element code was made in order to understand the effect of attack angle on the friction coefficient. The contact surface and the friction coefficient were also studied, and the results compared to the Bowden and Tabor model. The superposition of the numerical, analytical and experimental results showed a better correlation between the wear mechanisms and the friction coefficient. It also showed the importance of the model hypothesis used to simulate the scratch phenomenon.
Le transport de matériaux granulaires génère souvent des endommagements sévères des surfaces avec lesquelles ils sont en contact. La compréhension de la corrélation entre le coefficient de frottement, la géométrie des particules et les mécanismes d'usure est très importante pour maîtriser l'usure abrasive. L'objectif de cette étude est d'étudier l'effet de la géométrie des particules sur les mécanismes d'usure et le coefficient de frottement lors d'un contact glissant sur une surface plane. Des simulations numériques et analytiques ont été comparées avec les résultats expérimentaux. Des essais de rayages ont été réalisés sur un alliage d'aluminium–magnésium du type 5xxx en utilisant des cônes rigides avec différentes géométries. Ce test permet de préciser l'effet de l'angle d'attaque sur les mécanismes d'usure. Un code de calcul par éléments finis est utilisé pour étudier l'effet de l'angle d'attaque sur le coefficient de frottement. La surface de contact et le coefficient de frottement ont été aussi étudiés et les résultats ont été comparés avec le modèle de Bowden et Tabor. La superposition des résultats numériques, analytiques et expérimentaux montre une bonne corrélation entre les mécanismes d'usure et le coefficient de frottement. L'importance des hypothèses du modèle utilisées pour simuler le phénomène de rayage a été aussi mise en évidence.
Accepted:
Published online:
Mots-clés : Frottement, Usure, Abrasion, Simulation analytique, Simulation numérique
Salah Mezlini 1; M. Zidi 1; H. Arfa 1; Mohamed Ben Tkaya 1; Philippe Kapsa 2
@article{CRMECA_2005__333_11_830_0, author = {Salah Mezlini and M. Zidi and H. Arfa and Mohamed Ben Tkaya and Philippe Kapsa}, title = {Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient}, journal = {Comptes Rendus. M\'ecanique}, pages = {830--837}, publisher = {Elsevier}, volume = {333}, number = {11}, year = {2005}, doi = {10.1016/j.crme.2005.09.005}, language = {en}, }
TY - JOUR AU - Salah Mezlini AU - M. Zidi AU - H. Arfa AU - Mohamed Ben Tkaya AU - Philippe Kapsa TI - Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient JO - Comptes Rendus. Mécanique PY - 2005 SP - 830 EP - 837 VL - 333 IS - 11 PB - Elsevier DO - 10.1016/j.crme.2005.09.005 LA - en ID - CRMECA_2005__333_11_830_0 ER -
%0 Journal Article %A Salah Mezlini %A M. Zidi %A H. Arfa %A Mohamed Ben Tkaya %A Philippe Kapsa %T Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient %J Comptes Rendus. Mécanique %D 2005 %P 830-837 %V 333 %N 11 %I Elsevier %R 10.1016/j.crme.2005.09.005 %G en %F CRMECA_2005__333_11_830_0
Salah Mezlini; M. Zidi; H. Arfa; Mohamed Ben Tkaya; Philippe Kapsa. Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient. Comptes Rendus. Mécanique, Volume 333 (2005) no. 11, pp. 830-837. doi : 10.1016/j.crme.2005.09.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.09.005/
[1] Abrasion of aluminium alloy: effect of subsurface hardness and scratch interaction simulation, Wear, Volume 257 (2004) no. 9–10, pp. 892-900
[2] Micro-mechanisms of wear–wear modes, Wear, Volume 153 (1992), pp. 277-295
[3] I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Arnold, London, 1992
[4] Erodent particle characterization and the effect of particle size and shape on erosion, Wear, Volume 138 (1990), pp. 189-208
[5] The effect of abrasive grain size on the transition between abrasive and adhesive wear, Wear, Volume 97 (1984), pp. 291-302
[6] Understanding and quantification of elastic and plastic deformation during a scratch test, Wear, Volume 218 (1998), pp. 8-14
[7] Theoretical and experimental study of ploughing of rigid-plastic semi-infinite body by a rigid pyramidal indenter, Wear, Volume 88 (1983), pp. 195-206
[8] The mechanism of friction in boundary lubrication, ASM J. Tribol., Volume 107 (1985), pp. 452-462
[9] Friction, lubrication and wear: a survey of work during the last decade, Brit. J. Appl. Phys., Volume 17 (1966), pp. 1521-1544
[10] Wear, 249 (2001), pp. 422-432
[11] M. Barge, P. Gilles et al., in: Proceedings of the Euromech, vol. 435, Valenciennes, France, June 2002, pp. 303–310
[12] Experimental and numerical study of the ploughing part of abrasive wear, Wear, Volume 255 (2003), pp. 30-37
Cited by Sources:
Comments - Policy