[Strength of a porous medium with a heterogeneous solid phase]
The strength of a porous medium, the solid phase of which is made up of composite spheres is determined in the framework of a micromechanical self-consistent reasoning. The strength of the spherical cores is infinite while the surrounding layers are made up of a von Mises material. Application of the modified secant method yields an analytical expression of the macroscopic strength. Such results can be used in order to predict the setting and strength criterion of a cement paste during hydration.
On s'intéresse au critère de rupture macroscopique d'un matériau poreux dont la phase solide est constituée d'un ensemble de sphères composites formées d'un noyau infiniment résistant entouré d'une calotte dont la rupture est caractérisée par un critère de von Mises. Un critère macroscopique approché, établi par voie micromécanique, est formulé analytiquement. Le résultat est particulièrement simple dans le cas limite d'une calotte d'épaisseur infinitésimale. Le critère en question permet potentiellement de prévoir la prise et l'évolution de la résistance d'une pâte de ciment en cours d'hydratation.
Accepted:
Published online:
Keywords: Porous media, Micromechanics, Nonlinear homogenization, Strength, Cement
Julien Sanahuja 1; Luc Dormieux 2
@article{CRMECA_2005__333_11_818_0, author = {Julien Sanahuja and Luc Dormieux}, title = {R\'esistance d'un milieu poreux \`a phase solide h\'et\'erog\`ene}, journal = {Comptes Rendus. M\'ecanique}, pages = {818--823}, publisher = {Elsevier}, volume = {333}, number = {11}, year = {2005}, doi = {10.1016/j.crme.2005.09.008}, language = {fr}, }
Julien Sanahuja; Luc Dormieux. Résistance d'un milieu poreux à phase solide hétérogène. Comptes Rendus. Mécanique, Volume 333 (2005) no. 11, pp. 818-823. doi : 10.1016/j.crme.2005.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.09.008/
[1] The effective mechanical properties of non linear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[2] Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castaneda's nonlinear variational procedure, C. R. Acad. Sci. Paris, Ser. II, Volume 301 (1995), pp. 563-571
[3] Effective behavior of non linear composites (P. Suquet, ed.), Continuum Micromechanics, CISM Courses and Lectures, vol. 377, Springer, 1997
[4] Combined variational approach and morphological analysis to the behaviour of inhomogeneous elastic media, C. R. Acad. Sci. Paris, Ser. II, Volume 312 (1991), pp. 143-150
[5] Morphological representative pattern-based bounding in elasticity, J. Mech. Phys. Solids, Volume 44 (1996), pp. 307-331
[6] Structural morphology and constitutive behavior of microheterogeneous materials (P. Suquet, ed.), Continuum Micromechanics, CISM Courses and Lectures, vol. 377, Springer, 1997
[7] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London Ser. A, Volume 241 (1957), pp. 376-396
[8] n-layered inclusion-based micromechanical modelling, Int. J. Engrg. Sci., Volume 31 (1993) no. 1, pp. 1-10
[9] Poroelasticity and strength of fully or partially saturated porous materials (L. Dormieux; F.-J. Ulm, eds.), Applied Micromechanics of Porous Materials, CISM Courses and Lectures, vol. 480, Springer, 2005
Cited by Sources:
Comments - Policy