In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study – via direct numerical simulations – the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré–Silberberg effect takes place.
Dans un autre article, les auteurs ont introduit une méthode de domaine fictif avec multiplicateurs de Lagrange. Leur objectif dans le présent article est d'appliquer une généralisation de la méthode ci-dessus à : (i) la simulation numérique du mouvement de particules interagissant avec un écoulement de Poiseuille tri-dimensionnel lorsque fluide et particules ont la même densité ; (ii) l'étude – par simulation numérique directe – de la migration de particules sphériques interagissant avec l'écoulement de Poisseuille, dans un tube de section ciculaire, d'un fluide Newtonien, visqueux, incompressible, de même densité que les particules. Comme prévu, ces simulations, effectuées avec une ou plusieurs particules, mettent en evidence l'effet de Segré–Silberberg.
Mots-clés : Mécanique des fluides numérique, Ecoulements particulaires, Ecoulements solide–liquide, Particules de flottabilité neutre, Méthodes de domaines fictifs, Multiplicateurs de Lagrange distribués, Méthodes de décomposition d'opérateurs, Méthodes d'éléments finis, Effet de Segré–Silberberg
Tsorng-Whay Pan 1; Roland Glowinski 1
@article{CRMECA_2005__333_12_884_0, author = {Tsorng-Whay Pan and Roland Glowinski}, title = {Direct simulation of the motion of neutrally buoyant balls in a three-dimensional {Poiseuille} flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {884--895}, publisher = {Elsevier}, volume = {333}, number = {12}, year = {2005}, doi = {10.1016/j.crme.2005.10.006}, language = {en}, }
TY - JOUR AU - Tsorng-Whay Pan AU - Roland Glowinski TI - Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow JO - Comptes Rendus. Mécanique PY - 2005 SP - 884 EP - 895 VL - 333 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2005.10.006 LA - en ID - CRMECA_2005__333_12_884_0 ER -
Tsorng-Whay Pan; Roland Glowinski. Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow. Comptes Rendus. Mécanique, Fluid-solid interactions: modeling, simulation, bio-mechanical applications, Volume 333 (2005) no. 12, pp. 884-895. doi : 10.1016/j.crme.2005.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.10.006/
[1] Radial particle displacements in Poiseuille flow of suspensions, Nature, Volume 189 (1961), pp. 209-210
[2] Behavior of macroscopic rigid spheres in Poiseuille flow. Part I, J. Fluid Mech., Volume 14 (1962), pp. 115-157
[3] The flow of suspensions through tubes. Part V: inertial effects, Canad. J. Chem. Engrg., Volume 44 (1966), pp. 181-193
[4] Hydrodynamic resistance of particles at small Reynolds numbers, Adv. Chem. Engrg., Volume 6 (1966), pp. 287-438
[5] Suspended particles in fluid flow through tubes, Ann. Rev. Fluid Mech., Volume 3 (1971), pp. 291-316
[6] Particle motions in viscous, Ann. Rev. Fluid Mech., Volume 12 (1980), pp. 435-476
[7] Some theoretical results for the motion of solid spherical particles in a viscous fluid (G.F. Hewitt; J.M. Delhaye; N. Zuber, eds.), Multiphase Science and Technology, vol. 4, Hemisphere Pub. Corp., New York, 1989, pp. 583-798
[8] Inertial migration of a small sphere in linear shear flows, J. Fluid Mech., Volume 224 (1991), pp. 261-274
[9] Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2: Couette and Poiseuille flows, J. Fluid Mech., Volume 277 (1994), pp. 271-301
[10] Flow between parallel walls containing the lines of neutrally buoyant circular cylinders, Int. J Multiphase Flow, Volume 26 (2000), pp. 1981-2004
[11] Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176
[12] A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, Volume 25 (1999), pp. 755-794
[13] A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., Volume 169 (2001), pp. 363-426
[14] Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, J. Comput. Phys., Volume 181 (2001), pp. 260-279
[15] Migration of a sphere in tube flow, J. Fluid Mech., Volume 540 (2005), pp. 109-131
[16] Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flow, Comput. Phys. Rep., Volume 6 (1987), pp. 73-187
[17] A three-dimensional fictitious domain method for incompressible fluid flow problems, Int. J. Numer. Methods Fluids, Volume 25 (1997), pp. 719-736
[18] Splitting and alternating direction methods (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. I, North-Holland, Amsterdam, 1990, pp. 197-462
[19] Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., Volume 151 (1998), pp. 181-194
[20] J. Adams, P. Swarztrauber, R. Sweet, FISHPAK: A package of Fortran subprograms for the solution of separable elliptic partial differential equations, The National Center for Atmospheric Research, Boulder, CO, 1980
[21] A wave equation approach to the numerical solution of the Navier–Stokes equations for incompressible viscous flow, C. R. Acad. Sci. Paris, Sér. I Math., Volume 325 (1997), pp. 783-791
[22] A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier–Stokes equations, Comput. Fluid Dynamics J., Volume 9 (2000), pp. 28-42
Cited by Sources:
Comments - Policy