Comptes Rendus
Fluid–solid interactions: modeling, simulation, bio-mechanical applications
Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow
Comptes Rendus. Mécanique, Volume 333 (2005) no. 12, pp. 884-895.

In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study – via direct numerical simulations – the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré–Silberberg effect takes place.

Dans un autre article, les auteurs ont introduit une méthode de domaine fictif avec multiplicateurs de Lagrange. Leur objectif dans le présent article est d'appliquer une généralisation de la méthode ci-dessus à : (i) la simulation numérique du mouvement de particules interagissant avec un écoulement de Poiseuille tri-dimensionnel lorsque fluide et particules ont la même densité ; (ii) l'étude – par simulation numérique directe – de la migration de particules sphériques interagissant avec l'écoulement de Poisseuille, dans un tube de section ciculaire, d'un fluide Newtonien, visqueux, incompressible, de même densité que les particules. Comme prévu, ces simulations, effectuées avec une ou plusieurs particules, mettent en evidence l'effet de Segré–Silberberg.

Published online:
DOI: 10.1016/j.crme.2005.10.006
Keywords: Computational fluid mechanics, Particulate flow, Solid–liquid flow, Neutrally buoyant particles, Fictitious domain methods, Distributed Lagrange multipliers, Operator-splitting methods, Finite element methods, Segré–Silberberg effect
Mot clés : Mécanique des fluides numérique, Ecoulements particulaires, Ecoulements solide–liquide, Particules de flottabilité neutre, Méthodes de domaines fictifs, Multiplicateurs de Lagrange distribués, Méthodes de décomposition d'opérateurs, Méthodes d'éléments finis, Effet de Segré–Silberberg

Tsorng-Whay Pan 1; Roland Glowinski 1

1 University of Houston, Department of Mathematics, Houston, TX 77204, USA
@article{CRMECA_2005__333_12_884_0,
     author = {Tsorng-Whay Pan and Roland Glowinski},
     title = {Direct simulation of the motion of neutrally buoyant balls in a three-dimensional {Poiseuille} flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {884--895},
     publisher = {Elsevier},
     volume = {333},
     number = {12},
     year = {2005},
     doi = {10.1016/j.crme.2005.10.006},
     language = {en},
}
TY  - JOUR
AU  - Tsorng-Whay Pan
AU  - Roland Glowinski
TI  - Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 884
EP  - 895
VL  - 333
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2005.10.006
LA  - en
ID  - CRMECA_2005__333_12_884_0
ER  - 
%0 Journal Article
%A Tsorng-Whay Pan
%A Roland Glowinski
%T Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow
%J Comptes Rendus. Mécanique
%D 2005
%P 884-895
%V 333
%N 12
%I Elsevier
%R 10.1016/j.crme.2005.10.006
%G en
%F CRMECA_2005__333_12_884_0
Tsorng-Whay Pan; Roland Glowinski. Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow. Comptes Rendus. Mécanique, Volume 333 (2005) no. 12, pp. 884-895. doi : 10.1016/j.crme.2005.10.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.10.006/

[1] G. Segré; A. Silberberg Radial particle displacements in Poiseuille flow of suspensions, Nature, Volume 189 (1961), pp. 209-210

[2] G. Segré; A. Silberberg Behavior of macroscopic rigid spheres in Poiseuille flow. Part I, J. Fluid Mech., Volume 14 (1962), pp. 115-157

[3] A. Karnis; H.L. Goldsmith; S.G. Mason The flow of suspensions through tubes. Part V: inertial effects, Canad. J. Chem. Engrg., Volume 44 (1966), pp. 181-193

[4] H. Brenner Hydrodynamic resistance of particles at small Reynolds numbers, Adv. Chem. Engrg., Volume 6 (1966), pp. 287-438

[5] R.G. Cox; S.G. Mason Suspended particles in fluid flow through tubes, Ann. Rev. Fluid Mech., Volume 3 (1971), pp. 291-316

[6] L.G. Leal Particle motions in viscous, Ann. Rev. Fluid Mech., Volume 12 (1980), pp. 435-476

[7] F. Feuillebois Some theoretical results for the motion of solid spherical particles in a viscous fluid (G.F. Hewitt; J.M. Delhaye; N. Zuber, eds.), Multiphase Science and Technology, vol. 4, Hemisphere Pub. Corp., New York, 1989, pp. 583-798

[8] J.B. McLaughlin Inertial migration of a small sphere in linear shear flows, J. Fluid Mech., Volume 224 (1991), pp. 261-274

[9] J. Feng; H.H. Hu; D.D. Joseph Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2: Couette and Poiseuille flows, J. Fluid Mech., Volume 277 (1994), pp. 271-301

[10] T. Inamuro; K. Maeba; F. Ogino Flow between parallel walls containing the lines of neutrally buoyant circular cylinders, Int. J Multiphase Flow, Volume 26 (2000), pp. 1981-2004

[11] R. Glowinski Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176

[12] R. Glowinski; T.-W. Pan; T. Hesla; D.D. Joseph A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, Volume 25 (1999), pp. 755-794

[13] R. Glowinski; T.-W. Pan; T. Hesla; D.D. Joseph; J. Périaux A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow, J. Comput. Phys., Volume 169 (2001), pp. 363-426

[14] T.-W. Pan; R. Glowinski Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow, J. Comput. Phys., Volume 181 (2001), pp. 260-279

[15] B.H. Yang; J. Wang; D.D. Joseph; H.H. Hu; T.-W. Pan; R. Glowinski Migration of a sphere in tube flow, J. Fluid Mech., Volume 540 (2005), pp. 109-131

[16] M.O. Bristeau; R. Glowinski; J. Periaux Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flow, Comput. Phys. Rep., Volume 6 (1987), pp. 73-187

[17] T. Bertrand; P.A. Tanguy; F. Thibault A three-dimensional fictitious domain method for incompressible fluid flow problems, Int. J. Numer. Methods Fluids, Volume 25 (1997), pp. 719-736

[18] G.I. Marchuk Splitting and alternating direction methods (P.G. Ciarlet; J.L. Lions, eds.), Handbook of Numerical Analysis, vol. I, North-Holland, Amsterdam, 1990, pp. 197-462

[19] R. Glowinski; T.-W. Pan; J. Périaux Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies, Comput. Methods Appl. Mech. Engrg., Volume 151 (1998), pp. 181-194

[20] J. Adams, P. Swarztrauber, R. Sweet, FISHPAK: A package of Fortran subprograms for the solution of separable elliptic partial differential equations, The National Center for Atmospheric Research, Boulder, CO, 1980

[21] E.J. Dean; R. Glowinski A wave equation approach to the numerical solution of the Navier–Stokes equations for incompressible viscous flow, C. R. Acad. Sci. Paris, Sér. I Math., Volume 325 (1997), pp. 783-791

[22] T.-W. Pan; R. Glowinski A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier–Stokes equations, Comput. Fluid Dynamics J., Volume 9 (2000), pp. 28-42

Cited by Sources:

Comments - Policy