Comptes Rendus
Fluid–solid interactions: modeling, simulation, bio-mechanical applications
Adaptive finite elements for the steady free fall of a body in a Newtonian fluid
Comptes Rendus. Mécanique, Volume 333 (2005) no. 12, pp. 896-909.

The numerical simulation of the free fall of a solid body in a viscous fluid is a challenging task since it requires computational domains which usually need to be several order of magnitude larger than the solid body in order to avoid the influence of artificial boundaries. Toward an optimal mesh design in that context, we propose a method based on the weighted a posteriori error estimation of the finite element approximation of the fluid/body motion. A key ingredient for the proposed approach is the reformulation of the conservation and kinetic equations in the solid frame as well as the implicit treatment of the hydrodynamic forces and torque acting on the solid body in the weak formulation. Information given by the solution of an adequate dual problem allows one to control the discretization error of given functionals. The analysis encompasses the control of the free fall velocity, the orientation of the body, the hydrodynamic force and torque on the body. Numerical experiments for the two dimensional sedimentation problem validate the method.

La simulation numérique de la sédimentation d'un corps solide dans un fluide visqueux est un problème difficile car il exige, entre autres, l'emploi de domaines de calcul de plusieurs ordres de grandeur plus grands que le corps solide, ceci afin d'éviter l'influence des frontières artificielles. Dans le but de construire un maillage de calcul optimal, dans ce contexte, nous proposons un méthode basée sur des estimations d'erreur a posteriori avec poids pour l'approximation par éléments finis utilisée pour simuler le couplage fluide/solide. Un élément clé de l'approche proposée dans cet article est la reformulation des équations de l'écoulement, et du mouvement du corps solide, dans un repère mobile, rigidement attaché au solide ; par ailleurs, via une formulation variationelle bien choisie, nous évitons d'avoir à calculer, explicitement, la résultante et le moment des forces hydrodynamiques que le fluide exerce sur le solide. Les informations fournies par la solution d'un problème dual bien choisi, permettent de contrôler l'erreur de discrétisation pour des fonctionnelles données de la solution (traînée, par exemple). Notre analyse couvre le calcul de la vitesse de sédimentation, l'orientation du corps solide, la résultante et le moment des forces que le fluide exerce sur le solide. Des essais numériques, concernant la résolution d'un problème de sédimentation bi-dimensionnel, valident la méthode proposée.

Published online:
DOI: 10.1016/j.crme.2005.10.004
Keywords: Computational fluid mechanics, Finite element method, A posteriori error estimation, Free steady fall problem, Particulate flow, Fluid–structure coupling
Mot clés : Mécanaique des fluides numérique, Méthode des élements finis, Estimation d'erreur a posteriori, Écoulements particulaires, Couplage fluide–structure

Vincent Heuveline 1

1 Institute for Applied Mathematics, University of Karlsruhe, 76128 Karlsruhe, Germany
@article{CRMECA_2005__333_12_896_0,
     author = {Vincent Heuveline},
     title = {Adaptive finite elements for the steady free fall of a body in a {Newtonian} fluid},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {896--909},
     publisher = {Elsevier},
     volume = {333},
     number = {12},
     year = {2005},
     doi = {10.1016/j.crme.2005.10.004},
     language = {en},
}
TY  - JOUR
AU  - Vincent Heuveline
TI  - Adaptive finite elements for the steady free fall of a body in a Newtonian fluid
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 896
EP  - 909
VL  - 333
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2005.10.004
LA  - en
ID  - CRMECA_2005__333_12_896_0
ER  - 
%0 Journal Article
%A Vincent Heuveline
%T Adaptive finite elements for the steady free fall of a body in a Newtonian fluid
%J Comptes Rendus. Mécanique
%D 2005
%P 896-909
%V 333
%N 12
%I Elsevier
%R 10.1016/j.crme.2005.10.004
%G en
%F CRMECA_2005__333_12_896_0
Vincent Heuveline. Adaptive finite elements for the steady free fall of a body in a Newtonian fluid. Comptes Rendus. Mécanique, Volume 333 (2005) no. 12, pp. 896-909. doi : 10.1016/j.crme.2005.10.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.10.004/

[1] G.P. Galdi On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications (S. Friedlander et al., eds.), Handbook of Mathematical Fluid Dynamics, vol. 1, Elsevier, Amsterdam, 2002, pp. 653-791

[2] C. Conca; J.S. Martin; M. Tucsnak Existence of the solutions for the equations modelling the motion of rigid body in a viscous fluid, Comm. Partial Differential Equations, Volume 25 (2000) no. 5–6, pp. 1019-1042

[3] B. Desjardin; M. Esteban Existence of weak solutions for the motion of rigid bodies in viscous fluids, Arch. Rational Mech. Anal., Volume 46 (1999), pp. 59-71

[4] D. Serre Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math., Volume 4 (1987) no. 1, pp. 99-110

[5] H.F. Weinberger On the steady fall of a body in a Navier–Stokes fluid, Proc. Sympos. Pure Math., Volume 23 (1973), pp. 421-440

[6] T.W. Pan; R. Glowinski; G.P. Galdi Direct simulation of the motion of a settling ellipsoid in Newtonian fluid, J. Comput. Appl. Math., Volume 149 (2002) no. 1, pp. 71-82

[7] T.W. Pan; R. Glowinski; G.P. Galdi Addendum to: direct simulation of the motion of a settling ellipsoid in Newtonian fluid, J. Comput. Appl. Math. (2003)

[8] R. Glowinski Finite element methods for incompressible viscous flow (P.G. Ciarlet; J.L. Lions, eds.), Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, vol. IX, North-Holland, Amsterdam, 2003, pp. 3-1176

[9] R. Glowinski; T.W. Pan; T.I. Hesla; D.D. Joseph; J. Périaux A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 363-426

[10] M. Jenny; J. Dusek Efficient numerical method for the direct numerical simulation of the flow past a single light moving spherical body in transitional regimes, J. Comput. Phys., Volume 194 (2004) no. 1, pp. 215-232

[11] H.H. Hu Direct simulation of flows of solid–liquid mixtures, Int. J. Multiphase Flow, Volume 22 (1996), pp. 335-352

[12] R. Glowinski Viscous flow simulation by finite element methods and related numerical techniques (E.M. Murman; S.S. Abarbanel, eds.), Progress and Supercomputing in Computational Fluid Dynamics, Birkhäuser, Boston, MA, 1985, pp. 173-210

[13] S. Bönisch, V. Heuveline, On the numerical simulation of the instationary free fall of a solid in a fluid. I. The Newtonian case, Technical Report 2004-24, University Heidelberg, 2004

[14] G.P. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Linearized Steady Problems, Springer Tracts Nat. Philos., vol. 38, Springer-Verlag, 1998

[15] G.P. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Nonlinear Steady Problems, Springer Tracts Nat. Philos., vol. 39, Springer-Verlag, 1998

[16] G.P. Galdi; A. Vaidya Translational steady fall of symmetric bodies in a Navier–Stokes liquid, with application to particle sedimentation, J. Math. Fluid Mech., Volume 3 (2001), pp. 183-211

[17] M. Giles, M. Larson, M. Levenstam, E. Süli, Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow, Technical Report NA-97/06, Oxford University Computing Laboratory, 1997

[18] H.H. Hu; D.D. Joseph; M.J. Crochet Direct simulation of fluid particle motions, Theor. Comp. Fluid Dyn., Volume 3 (1992), pp. 285-306

[19] S. Bönisch; V. Heuveline; P. Wittwer Adaptive boundary conditions for exterior flow problems, J. Math. Fluid Mech., Volume 7 (2005), pp. 85-107

[20] S. Bönisch, V. Heuveline, P. Wittwer, Second order adaptive boundary conditions for exterior flow problems: non-symmetric stationary flows in two dimensions, Technical Report 2004-10, University Heidelberg, 2004

[21] P. Wittwer On the structure of stationary solutions of the Navier–Stokes equations, Commun. Math. Phys., Volume 226 (2002), pp. 455-474

[22] P. Hood; C. Taylor A numerical solution of the Navier–Stokes equations using the finite element techniques, Comput. Fluids, Volume 1 (1973), pp. 73-100

[23] S.C. Brenner; R.L. Scott The Mathematical Theory of Finite Element Methods, Springer, Berlin, 1994

[24] F. Brezzi; R. Falk Stability of higher-order Hood-Taylor methods, SIAM J. Numer. Anal., Volume 28 (1991) no. 3, pp. 581-590

[25] V. Heuveline, F. Schieweck, On the inf-sup condition for mixed hp-FEM on meshes with hanging nodes, Technical Report 2004-25, University Heidelberg, 2004

[26] K. Eriksson; D. Estep; P. Hansbo; C. Johnson Introduction to adaptive methods for differential equations, Acta Numerica 1995, vol. 4, Cambridge University Press, 1995, pp. 105-158

[27] R. Becker; R. Rannacher An optimal control approach to error estimation and mesh adaptation in finite element methods (A. Iserles, ed.), Acta Numerica 2000, Cambridge University Press, 2001, pp. 1-101

[28] L. Machiels; A.T. Patera; J. Peraire Output bound approximation for partial differential equations; application to the incompressible Navier–Stokes equations (S. Biringen, ed.), Industrial and Environmental Applications of Direct and Large Eddy Numerical Simulation, Springer, 1998

[29] J.T. Oden; S. Prudhomme On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Eng., Volume 176 (1999), pp. 313-331

[30] E. Giles; M.B. Süli Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality (A. Iserles, ed.), Acta Numerica 2002, Cambridge University Press, 2002 (pp. 145–236)

[31] M.B. Giles On adjoint equations for error analysis and optimal grid adaptation (D.A. Caughey; M.M. Hafez, eds.), Frontiers of Computational Fluid Dynamics 1998, World Scientific, 1998 (pp. 155–170)

[32] M. Ainsworth; J.T. Oden A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math., Wiley, Chichester, 2000

Cited by Sources:

Comments - Policy