Comptes Rendus
Fluid–solid interactions: modeling, simulation, bio-mechanical applications
Fluid structure interaction problems in large deformation
Comptes Rendus. Mécanique, Fluid-solid interactions: modeling, simulation, bio-mechanical applications, Volume 333 (2005) no. 12, pp. 910-922.

The present article deals with the simulation of fluid structure interaction problems in large deformation, and discusses two aspects of their numerical solution: (i) the derivation of energy conserving time integration schemes in presence of fluid structure coupling, moving grids, and nonlinear kinematic constraints such as incompressibility and contact, (ii) the introduction of adequate preconditioners efficiently chaining local fluid and structure solvers. Solutions are proposed, analyzed and tested using nonlinear energy correcting terms, and added mass based Dirichlet Neumann preconditioners. Numerical applications include nonlinear impact problems in elastodynamics and blood flows predictions within flexible arteries.

Du fait des fortes nonlinéarités du problème posé, la simulation de phénomènes d'interaction fluide structure en grands déplacements et vitesses modérées conduit à plusieurs difficultés numériques : respect numérique des mécanismes de conservation d'énergie dans le traitement des grilles mobiles, des forces de raideur, de la synchronisation des forces de contact et d'interface d'une part, construction de préconditionneurs adaptés permettant l'utilisation efficace d'algorithmes de couplage résolvant de manière successive et découplée les parties fluide et structure, d'autre part.

Published online:
DOI: 10.1016/j.crme.2005.10.009
Keywords: Computational fluid mechanics, Nonlinear elastodynamics, Time integration, Energy conservation, Fluid structure interaction, Added mass, Preconditioner
Mots-clés : Mécanique des fluides numérique, Élastodynamique nonlinéaire, Intégration en temps, Conservation de l'énergie, Interaction fluide structure, Masse ajoutée, Préconditionneur

Patrick Le Tallec 1; Jean-Frédéric Gerbeau 2; Patrice Hauret 3; Marina Vidrascu 2

1 École polytechnique, 91128 Palaiseau cedex, France
2 INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay cedex, France
3 Graduate Aeronautical Labs, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
@article{CRMECA_2005__333_12_910_0,
     author = {Patrick Le Tallec and Jean-Fr\'ed\'eric Gerbeau and Patrice Hauret and Marina Vidrascu},
     title = {Fluid structure interaction problems in large deformation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {910--922},
     publisher = {Elsevier},
     volume = {333},
     number = {12},
     year = {2005},
     doi = {10.1016/j.crme.2005.10.009},
     language = {en},
}
TY  - JOUR
AU  - Patrick Le Tallec
AU  - Jean-Frédéric Gerbeau
AU  - Patrice Hauret
AU  - Marina Vidrascu
TI  - Fluid structure interaction problems in large deformation
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 910
EP  - 922
VL  - 333
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2005.10.009
LA  - en
ID  - CRMECA_2005__333_12_910_0
ER  - 
%0 Journal Article
%A Patrick Le Tallec
%A Jean-Frédéric Gerbeau
%A Patrice Hauret
%A Marina Vidrascu
%T Fluid structure interaction problems in large deformation
%J Comptes Rendus. Mécanique
%D 2005
%P 910-922
%V 333
%N 12
%I Elsevier
%R 10.1016/j.crme.2005.10.009
%G en
%F CRMECA_2005__333_12_910_0
Patrick Le Tallec; Jean-Frédéric Gerbeau; Patrice Hauret; Marina Vidrascu. Fluid structure interaction problems in large deformation. Comptes Rendus. Mécanique, Fluid-solid interactions: modeling, simulation, bio-mechanical applications, Volume 333 (2005) no. 12, pp. 910-922. doi : 10.1016/j.crme.2005.10.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.10.009/

[1] O. Gonzalez Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput Methods Appl. Mech. Engrg., Volume 190 ( December 2000 ) no. 13–14, pp. 1763-1783

[2] S. Mani Truncation error and energy conservation for fluid structure interactions, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003) no. 43, pp. 4769-4804

[3] P. Le Tallec, S. Mani, Conservation laws for fluid structure interactions, in: T. Kvamsdal (Ed.), International Symposium on Computational Methods for Fluid Structure Interactions, Trondheim, 1999, pp. 61–78

[4] R. Dautray; J.L. Lions Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin, 1990

[5] E. de Langre Fluides et Solides, Editions de l'Ecole Polytechnique, Palaiseau, 2001

[6] J.C. Simo; N. Tarnow The discrete energy-momentum method. Conserving algorithms for non linear elastodynamics, Z. Angew. Math. Phys., Volume 43 (1992), pp. 757-792

[7] P. Le Tallec; P. Hauret Energy conservation in fluid–structure interactions (P. Neittanmaki; Y. Kuznetsov; O. Pironneau, eds.), Numerical Methods for Scientific Computing, Variational Problems and Applications, CIMNE, Barcelona, 2003, pp. 94-107

[8] P. Hauret, Méthodes numériques pour la dynamique des structures nonlinéaires incompressibles à deux échelles, PhD thesis, Ecole Polytechnique, 2004

[9] A. Quarteroni; A. Valli Domain Decomposition Methods for Partial Differential Equations, Oxford Univ. Press, 1999

[10] P. Le Tallec; J. Mouro Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., Volume 190 (2001) no. 24–25, pp. 3039-3068

[11] J.F. Gerbeau; M. Vidrascu A quasi-newton algorithm based on a reduced model for fluid–structure interaction problems in blood flows, M2AN, Volume 37 (2003), pp. 663-680

[12] K.-J. Bathe Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982

[13] M.A. Crisfield Nonlinear Finite Element Analysis of Solids and Structures, vol. 2, Advanced Topics, Wiley, 1997

[14] T.A. Laursen; V. Chawla Design of energy conserving algorithms for frictionless dynamic contact problems, Int. J. Numer. Methods Engrg., Volume 40 (1997), pp. 863-886

[15] F. Armero; E. Petöcz Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods Appl. Mech. Engrg., Volume 158 (1998), pp. 269-300

[16] T.A. Laursen; G.R. Love Improved implicit integrators for transient impact problems; geometric admissibility within the conserving framework, Int. J. Numer. Methods Engrg., Volume 53 ( January 2002 ) no. 2, pp. 245-274

[17] Y. Saad Iterative Methods for Sparse Linear Systems, PWS, 1996

Cited by Sources:

Comments - Policy