[Commande optimale et formalisme de Newton–Euler pour les poutres de Cosserat]
Un formalisme de Newton–Euler pour les théories de poutres de Cosserat est obtenu de manière purement déductive, grâce à une analogie avec la théorie de la commande optimale. La méthode repose sur l'utilisation conjointe du principe de la moindre contrainte de Gauss, des équations d'Appell et de la théorie de la commande optimale, de façon analogue à un travail précédent sur le formalisme de Newton–Euler bien connu pour les systèmes multicorps.
A Newton–Euler formalism is derived for Cosserat beam theory in a purely deductive manner, thanks to an analogy with optimal control theory. The method relies upon joint use of Gauss least constraint principle, Appell's equations and optimal control theory, that was used successfully in a previous work for the classical case of discrete Newton–Euler backward and forward recursions of multibody systems.
Accepté le :
Publié le :
Mots-clés : Dynamique des systèmes rigides ou flexibles, Newton–Euler, principe de Gauss, équations d'Appell, Commande optimale
Georges Le Vey 1
@article{CRMECA_2006__334_3_170_0, author = {Georges Le Vey}, title = {Optimal control theory and {Newton{\textendash}Euler} formalism for {Cosserat} beam theory}, journal = {Comptes Rendus. M\'ecanique}, pages = {170--175}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2006}, doi = {10.1016/j.crme.2006.01.006}, language = {en}, }
Georges Le Vey. Optimal control theory and Newton–Euler formalism for Cosserat beam theory. Comptes Rendus. Mécanique, Volume 334 (2006) no. 3, pp. 170-175. doi : 10.1016/j.crme.2006.01.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.01.006/
[1] Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics, IEEE Trans. Robotics and Automation, Volume 3 (1987) no. 6, pp. 624-639
[2] The relationship between recursive multibody dynamics and discrete-time optimal control, IEEE Trans. Robotics and Automation, Volume 7 (1991) no. 6, pp. 743-749
[3] G. Le Vey, The Newton–Euler formalism for general multibody systems as the solution of an optimal control problem, Technical Report 05/4/AUTO, IRCCyN/Ecole des Mines de Nantes, 2005
[4] F. Boyer, M. Porez, W. Khalil, Macro-continuous computed torque algorithm for a 3d eel-like robot, IEEE Trans. Robotics, 2006, in press
[5] Traité de Mécanique Rationnelle, Gauthier–Villars, 1921
[6] C.F. Gauss, Journal de Crelle, t. IV, 1829
[7] G. Le Vey, Hyperredundant manipulators, continuous Newton–Euler algorithms and optimal control theory, Technical Report 05/3/AUTO, IRCCyN/Ecole des Mines de Nantes, 2005
[8] Applied Optimal Control, Hemisphere Pub. Corp., 1975 (revised printing)
[9] Numerical Solution of Initial-Value Problems in Differential/Algebraic Equations, North-Holland, Amsterdam, 1989
- Modeling on flexible variable topology mechanism based on the Kane method, Journal of Physics: Conference Series, Volume 2483 (2023) no. 1, p. 012018 | DOI:10.1088/1742-6596/2483/1/012018
- , 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft) (2022), p. 416 | DOI:10.1109/robosoft54090.2022.9762215
- Integral dynamics modelling of chain-like space robot based on n-order dual number, Acta Astronautica, Volume 177 (2020), p. 552 | DOI:10.1016/j.actaastro.2020.07.044
- Direct and Inverse Second Order Kinematics for Hyper-Redundant Parallel Robots, Advances in Robot Kinematics (2014), p. 223 | DOI:10.1007/978-3-319-06698-1_24
- Notes on Newton–Euler formulation of robotic manipulators, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Volume 226 (2012) no. 1, p. 61 | DOI:10.1177/1464419311428034
- , Proceedings 2007 IEEE International Conference on Robotics and Automation (2007), p. 1480 | DOI:10.1109/robot.2007.363193
- , 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (2006), p. 4163 | DOI:10.1109/iros.2006.281906
Cité par 7 documents. Sources : Crossref
⁎ This work was supported by the French CNRS ROBEA program.
Commentaires - Politique