[Commande optimale et formalisme de Newton–Euler pour les poutres de Cosserat]
Un formalisme de Newton–Euler pour les théories de poutres de Cosserat est obtenu de manière purement déductive, grâce à une analogie avec la théorie de la commande optimale. La méthode repose sur l'utilisation conjointe du principe de la moindre contrainte de Gauss, des équations d'Appell et de la théorie de la commande optimale, de façon analogue à un travail précédent sur le formalisme de Newton–Euler bien connu pour les systèmes multicorps.
A Newton–Euler formalism is derived for Cosserat beam theory in a purely deductive manner, thanks to an analogy with optimal control theory. The method relies upon joint use of Gauss least constraint principle, Appell's equations and optimal control theory, that was used successfully in a previous work for the classical case of discrete Newton–Euler backward and forward recursions of multibody systems.
Accepté le :
Publié le :
Mot clés : Dynamique des systèmes rigides ou flexibles, Newton–Euler, principe de Gauss, équations d'Appell, Commande optimale
Georges Le Vey 1
@article{CRMECA_2006__334_3_170_0, author = {Georges Le Vey}, title = {Optimal control theory and {Newton{\textendash}Euler} formalism for {Cosserat} beam theory}, journal = {Comptes Rendus. M\'ecanique}, pages = {170--175}, publisher = {Elsevier}, volume = {334}, number = {3}, year = {2006}, doi = {10.1016/j.crme.2006.01.006}, language = {en}, }
Georges Le Vey. Optimal control theory and Newton–Euler formalism for Cosserat beam theory. Comptes Rendus. Mécanique, Volume 334 (2006) no. 3, pp. 170-175. doi : 10.1016/j.crme.2006.01.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.01.006/
[1] Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics, IEEE Trans. Robotics and Automation, Volume 3 (1987) no. 6, pp. 624-639
[2] The relationship between recursive multibody dynamics and discrete-time optimal control, IEEE Trans. Robotics and Automation, Volume 7 (1991) no. 6, pp. 743-749
[3] G. Le Vey, The Newton–Euler formalism for general multibody systems as the solution of an optimal control problem, Technical Report 05/4/AUTO, IRCCyN/Ecole des Mines de Nantes, 2005
[4] F. Boyer, M. Porez, W. Khalil, Macro-continuous computed torque algorithm for a 3d eel-like robot, IEEE Trans. Robotics, 2006, in press
[5] Traité de Mécanique Rationnelle, Gauthier–Villars, 1921
[6] C.F. Gauss, Journal de Crelle, t. IV, 1829
[7] G. Le Vey, Hyperredundant manipulators, continuous Newton–Euler algorithms and optimal control theory, Technical Report 05/3/AUTO, IRCCyN/Ecole des Mines de Nantes, 2005
[8] Applied Optimal Control, Hemisphere Pub. Corp., 1975 (revised printing)
[9] Numerical Solution of Initial-Value Problems in Differential/Algebraic Equations, North-Holland, Amsterdam, 1989
Cité par Sources :
⁎ This work was supported by the French CNRS ROBEA program.
Commentaires - Politique