Comptes Rendus
Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties
[Polycristaux poreux constitués d'aiguilles orientées de façon uniforme ou axisymétrique : homogénéisation des propriétés élastiques]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 3, pp. 151-157.

De nombreux matériaux biologiques ou manufacturés présentent une microstructure poreuse à morphologie polycristalline constituée de feuillets ou d'aiguilles. On s'intéresse ici à des cristaux solides élancés, doués d'un comportement linéaire élastique isotrope ou anisotrope, dont les orientations sont distribuées de façon uniforme ou axisymétrique. Dans ce dernier cas, l'approche micromécanique proposée fait appel à la connaissance du tenseur de Hill pour une inclusion ellipsoidale d'élancement infini plongée dans un milieu isotrope transverse. L'expression intégrale de ce dernier donnée par Laws est évaluée numériquement en employant la théorie des fonctions holomorphes. Pour une porosité inférieure à 0,4, les propriétés élastiques du polycristal estimées à partir d'un schéma basé sur des inclusions ellipsoidales sont très proches de celles obtenues avec un schéma basé sur des inclusions sphériques. En revanche, à la différence du schéma basé sur des inclusions sphériques, le schéma basé sur des inclusions ellipsoidales ne prédit pas de seuil de percolation. En ce qui concerne la situation d'une distribution axisymétrique des orientations des cristaux solides, deux effets méritent d'être soulignés. D'une part, l'anisotropie est d'autant plus marquée que l'angle du cône des orientations diminue. D'autre part, à angle de cône donné, l'anisotropie augmente avec la porosité. Les estimations de l'élasticité du polycristal sont très faiblement affectées par l'anisotropie du minéral osseux. Ces résultats confirment le caractère très largement désordonné de l'orientation des cristaux constituant des mousses minérales dans les tissus osseux.

Porous polycrystal-type microstructures built up of needle-like platelets or sheets are characteristic for a number of biological and man-made materials. Herein, we consider (i) uniform, (ii) axisymmetrical orientation distribution of linear elastic, isotropic as well as anisotropic needles. Axisymmetrical needle orientation requires derivation of the Hill tensor for arbitrarily oriented ellipsoidal inclusions with one axis tending towards infinity, embedded in a transversely isotropic matrix; therefore, Laws' integral expression of the Hill tensor is evaluated employing the theory of rational functions. For a porosity lower 0.4, the elastic properties of the polycrystal with uniformly oriented needles are quasi-identical to those of a polycrystal with solid spheres. However, as opposed to the sphere-based model, the needle-based model does not predict a percolation threshold. As regards axisymmetrical orientation distribution of needles, two effects are remarkable: Firstly, the sharper the cone of orientations the higher the anisotropy of the polycrystal. Secondly, for a given cone, the anisotropy increases with the porosity. Estimates for the polycrystal stiffness are hardly influenced by the anisotropy of the bone mineral needles. Our results also confirm the very high degree of orientation randomness of crystals building up mineral foams in bone tissues.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2006.01.008
Keywords: Biomechanics, Porous polycrystal, Orientation distribution, Micromechanics, Hill tensor, Anisotropy
Mot clés : Biomécanique, Polycristal poreux, Distribution des orientations, Micromécanique, Tenseur de Hill, Anisotropie

Andreas Fritsch 1 ; Luc Dormieux 2 ; Christian Hellmich 1

1 Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), 1040 Vienna, Austria
2 LMSGC, UMR 113, CNRS/ENPC/LCPC, 77455 Marne-la-Vallée, France
@article{CRMECA_2006__334_3_151_0,
     author = {Andreas Fritsch and Luc Dormieux and Christian Hellmich},
     title = {Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {151--157},
     publisher = {Elsevier},
     volume = {334},
     number = {3},
     year = {2006},
     doi = {10.1016/j.crme.2006.01.008},
     language = {en},
}
TY  - JOUR
AU  - Andreas Fritsch
AU  - Luc Dormieux
AU  - Christian Hellmich
TI  - Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 151
EP  - 157
VL  - 334
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2006.01.008
LA  - en
ID  - CRMECA_2006__334_3_151_0
ER  - 
%0 Journal Article
%A Andreas Fritsch
%A Luc Dormieux
%A Christian Hellmich
%T Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties
%J Comptes Rendus. Mécanique
%D 2006
%P 151-157
%V 334
%N 3
%I Elsevier
%R 10.1016/j.crme.2006.01.008
%G en
%F CRMECA_2006__334_3_151_0
Andreas Fritsch; Luc Dormieux; Christian Hellmich. Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. Comptes Rendus. Mécanique, Volume 334 (2006) no. 3, pp. 151-157. doi : 10.1016/j.crme.2006.01.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.01.008/

[1] Ch. Hellmich; J.-F. Barthélémy; L. Dormieux Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach, European Journal of Mechanics A—Solids, Volume 23 (2004), pp. 783-810

[2] Ch. Hellmich; F.-J. Ulm Are mineralized tissues open crystal foams reinforced by crosslinked collagen?—some energy arguments, Journal of Biomechanics, Volume 35 (2002), pp. 1199-1212

[3] H. Silyn-Roberts; R.M. Sharp Crystal growth and the role of the organic network in eggshell biomineralization, Proceedings of the Royal Society of London, Series B, Volume 227 (1986) no. 1248, pp. 303-324

[4] V. Baroughel-Bouny, Caractérisation des pâtes de ciment et des bétons—méthodes, analyse, interprétation (Characterization of cement pastes and concretes—methods, analysis, interpretations), Technical report, Laboratoire Central des Ponts et Chaussées, Paris, France, 1994 (in French)

[5] X. Chateau; L. Dormieux Micromechanics of saturated and unsaturated porous media, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 26 (2002), pp. 831-844

[6] J.D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London, Series A, Volume 241 (1957), pp. 376-396

[7] A. Suvorov; G.J. Dvorak Rate forms of the Eshelby and Hill tensors, International Journal of Solids Structures, Volume 39 (2002), pp. 5659-5678

[8] A. Zaoui, Matériaux hétérogènes et composites (Heterogeneous materials and composites), Lecture Notes from École Polytechnique, Palaiseau, France, 1997 (in French)

[9] J.K. Katz; K. Ukraincik On the anisotropic elastic properties of hydroxyapatite, Journal of Biomechanics, Volume 4 (1971), pp. 221-227

[10] N. Laws The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material, Journal of Elasticity, Volume 7 (1977) no. 1, pp. 91-97

[11] S. Weiner; H.D. Wagner The material bone: structure—mechanical function relations, Annual Review of Materials Science, Volume 28 (1998), pp. 271-298

[12] P. Fratzl; S. Schreiber; K. Klaushofer Bone mineralization as studied by small-angle X-ray scattering, Connective Tissue Research, Volume 34 (1996) no. 4, pp. 247-254

[13] N. Sasaki Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone, Journal of Biomechanics, Volume 24 (1991), pp. 57-61

[14] P. Fratzl; N. Fratzl-Zelman; K. Klaushofer; G. Vogl; K. Koller Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering, Calcified Tissue International, Volume 48 (1991), pp. 407-413

[15] S. Lees; J.M. Ahern; M. Leonard Parameters influencing the sonic velocity in compact calcified tissues of various species, Journal of the Acoustical Society of America, Volume 74 (1983) no. 1, pp. 28-33

[16] S. Lees Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model, Connective Tissue Research, Volume 16 (1987), pp. 281-303

[17] S. Lees; E.A. Page A study of some properties of mineralized turkey leg tendon, Connective Tissue Research, Volume 28 (1992), pp. 263-287

[18] F. Peters; K. Schwarz; M. Epple The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochimica Acta, Volume 361 (2000), pp. 131-138

[19] S. Lees; J.D. Heeley; P.F. Cleary A study of some properties of a sample of bovine cortical bone using ultrasound, Calcified Tissue International, Volume 29 (1979), pp. 107-117

[20] N. Laws A note on penny-shaped cracks in transversely isotropic materials, Mechanics of Materials, Volume 4 (1985), pp. 209-212

[21] C. Gruescu; V. Monchiet; D. Kondo Eshelby tensor for a crack in an orthotropic elastic medium, Comptes Rendus Mecanique, Volume 333 (2005) no. 6, pp. 467-473

Cité par Sources :

Commentaires - Politique