[Une stratégie dynamique pour les méthodes d'approximation]
Le résultat numérique fourni par une méthode d'approximation est entaché d'une erreur globale qui comprend à la fois une erreur de troncature et une erreur d'arrondi. Considérons la suite convergente générée en divisant par deux successivement le pas utilisé. Si les calculs sont effectués jusqu'à ce que, dans la zone de convergence, la différence entre deux approximations successives soit uniquement due aux erreurs d'arrondi, alors l'erreur globale sur le résultat obtenu est minimale. De plus, ses bits significatifs non entachés d'erreur d'arrondi sont en commun avec le résultat exact, à un près.
The numerical result provided by an approximation method is affected by a global error, which consists of both a truncation error and a round-off error. Let us consider the converging sequence generated by successively dividing by two the step size used. If computations are performed until, in the convergence zone, the difference between two successive approximations is only due to round-off errors, then the global error on the result obtained is minimal. Furthermore its significant bits which are not affected by round-off errors are in common with the exact result, up to one.
Accepté le :
Publié le :
Mots-clés : Informatique, Méthodes d'approximation, Validation numérique, Méthodes de quadrature, Méthodes de Newton–Cotes, Méthode de Gauss–Legendre, Méthode CESTAC, Arithmétique Stochastique Discrète
Fabienne Jézéquel 1
@article{CRMECA_2006__334_6_362_0, author = {Fabienne J\'ez\'equel}, title = {A dynamical strategy for approximation methods}, journal = {Comptes Rendus. M\'ecanique}, pages = {362--367}, publisher = {Elsevier}, volume = {334}, number = {6}, year = {2006}, doi = {10.1016/j.crme.2006.04.005}, language = {en}, }
Fabienne Jézéquel. A dynamical strategy for approximation methods. Comptes Rendus. Mécanique, Volume 334 (2006) no. 6, pp. 362-367. doi : 10.1016/j.crme.2006.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.04.005/
[1] Dynamical control of computations using the trapezoidal and Simpson's rules, J. Univ. Comput. Sci., Volume 4 (1998) no. 1, pp. 2-10
[2] A stochastic scheme for solving definite integrals, Appl. Numer. Math., Volume 55 (2005) no. 2, pp. 125-136
[3] Reliable computation of a multiple integral involved in the neutron star theory, Math. Comput. Simul., Volume 71 (2006) no. 1, pp. 44-61
[4] Estimation de la précision des résultats de logiciels numériques, La Vie des Sciences, Volume 7 (1990) no. 2, pp. 93-145
[5] Les fondements de l'arithmétique stochastique, C. R. Acad. Sci. Paris Sér. I Math., Volume 315 (1992), pp. 1435-1440
[6] Discrete stochastic arithmetic for validating results of numerical software, Numer. Algorithms, Volume 37 (2004) no. 1–4, pp. 377-390
[7] Zéro mathématique et zéro informatique, C. R. Acad. Sci. Paris Sér. I Math., Volume 303 (1986) no. 1, pp. 997-1000 (also: La Vie des Sciences, 4, 1987, pp. 1-13)
[8] Definitely an integral, Amer. Math. Monthly, Volume 109 (2002) no. 7, pp. 670-671
[9] D.H. Bailey, X.S. Li, A comparison of three high-precision quadrature schemes, in: Proc. 5th Real Numbers and Computers Conference, Lyon, France, 2003, pp. 81–95
- Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method, Journal of Computational and Applied Mathematics, Volume 411 (2022), p. 13 (Id/No 114226) | DOI:10.1016/j.cam.2022.114226 | Zbl:1492.65367
- Application of the stochastic arithmetic to validate the results of nonlinear fractional model of HIV infection for CD8+T-cells, Mathematical Analysis of Infectious Diseases (2022), p. 259 | DOI:10.1016/b978-0-32-390504-6.00020-6
- A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library, Mathematics, Volume 9 (2021) no. 12, p. 1321 | DOI:10.3390/math9121321
- A Comparative Study between Discrete Stochastic Arithmetic and Floating-Point Arithmetic to Validate the Results of Fractional Order Model of Malaria Infection, Mathematics, Volume 9 (2021) no. 12, p. 1435 | DOI:10.3390/math9121435
- A Novel Method for Solving Second Kind Volterra Integral Equations with Discontinuous Kernel, Mathematics, Volume 9 (2021) no. 17, p. 2172 | DOI:10.3390/math9172172
- The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method, Mathematics, Volume 9 (2021) no. 3, p. 260 | DOI:10.3390/math9030260
- Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection, Mathematics, Volume 9 (2021) no. 9, p. 1031 | DOI:10.3390/math9091031
- A Valid Dynamical Control on the Reverse Osmosis System Using the CESTAC Method, Mathematics, Volume 9 (2020) no. 1, p. 48 | DOI:10.3390/math9010048
- Stepsize control for cubic spline interpolation, International Journal of Applied and Computational Mathematics, Volume 3 (2017) no. 2, pp. 693-702 | DOI:10.1007/s40819-015-0126-7 | Zbl:1397.65026
- Stochastic arithmetic in multiprecision, Mathematics in Computer Science, Volume 5 (2011) no. 4, pp. 359-375 | DOI:10.1007/s11786-011-0103-4 | Zbl:1264.68040
- Optimal iterate of the power and inverse iteration methods, Applied Numerical Mathematics, Volume 59 (2009) no. 7, pp. 1537-1548 | DOI:10.1016/j.apnum.2008.10.004 | Zbl:1162.65330
- A procedure with stepsize control for solving
one-dimensional IVPs, Mathematics and Computers in Simulation, Volume 79 (2008) no. 2, pp. 167-176 | DOI:10.1016/j.matcom.2007.11.004 | Zbl:1168.65047 - Numerical ‘health check’ for scientific codes: the CADNA approach, Computer Physics Communications, Volume 176 (2007) no. 8, p. 507 | DOI:10.1016/j.cpc.2007.01.005
Cité par 13 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier