Very different materials are named ‘Glass’, with Young's modulus E and Poisson's ratio ν extending from 5 to 180 GPa and from 0.1 to 0.4, respectively, in the case of bulk inorganic glasses. Glasses have in common the lack of long range order in the atomic organization. Beside the essential role of elastic properties for materials selection in mechanical design, we show in this analysis that macroscopical elastic characteristics () provide an interesting way to get insight into the short- and medium-range orders existing in glasses. In particular, ν, the packing density () and the glass network dimensionality appear to be strongly correlated. Networks consisting primarily of chains and layers units (chalcogenides, low Si-content silicate glasses) correspond to and , with maximum values observed for metallic glasses ( and ). On the contrary, is associated to a highly cross-linked network with a tri-dimensional organization resulting in a low packing density. Moreover, the temperature dependence of the elastic moduli brings a new light on the ‘fragility’ of glasses (as introduced by Angell) and on the level of cooperativity of atomic movements at the source of the deformation process.
Sous l'appellation « verre » sont rassemblés des matériaux très différents qui ont en commun une organisation atomique dépourvue d'ordre à longue distance, avec un module de Young (E) et un coefficient de Poisson (ν) variant respectivement de 5 à 180 GPa et de 0,1 à 0,4 pour les verres inorganiques. A côté du rôle essentiel que jouent les propriétés élastiques pour le choix d'un matériau de construction et le calcul de structure, nous montrons dans cette revue que les caractéristiques élastiques macroscopiques () permettent de sonder l'ordre à courte et à moyenne distance existant dans la plupart des verres. En particulier, une excellente corrélation existe entre ν, la densité d'empilement () et la dimensionnalité du réseau vitreux. Pour , on a , ce qui indique que le verre est principalement constitué de chaînes et de feuillets (chalcogénures, verres silicatés riches en cations compensateurs et modificateurs de réseau). Les maxima de ν et sont atteints pour les verres métalliques ( et ). Au contraire, lorsque , cela correspond à une grande réticulation et une organisation tri-dimensionnelle s'accompagnant d'une faible compacité. En outre, la dépendance des modules d'élasticité avec la température apporte un éclairage original sur la « fragilité » (au sens de Angell) des verres et sur le degré de coopérativité des mouvements des atomes à l'origine de la déformation.
Mots-clés : Milieux continus, Verre, Approche multiéchelle, Modules d'élasticité
Tanguy Rouxel 1
@article{CRMECA_2006__334_12_743_0, author = {Tanguy Rouxel}, title = {Elastic properties of glasses: a multiscale approach}, journal = {Comptes Rendus. M\'ecanique}, pages = {743--753}, publisher = {Elsevier}, volume = {334}, number = {12}, year = {2006}, doi = {10.1016/j.crme.2006.08.001}, language = {en}, }
Tanguy Rouxel. Elastic properties of glasses: a multiscale approach. Comptes Rendus. Mécanique, Volume 334 (2006) no. 12, pp. 743-753. doi : 10.1016/j.crme.2006.08.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.08.001/
[1] J. Non-Cryst. Sol., 27 (1978), pp. 161-172
[2] J. Mat. Sci., 27 (1992), pp. 279-284
[3] Appl. Phys. Lett., 84 (2004), p. 4911
[4] Mat. Sci. Trans., JIM, 36 (1995) no. 7, pp. 866-875
[5] Mat. Sci. Forum, 225–227 (1996), pp. 35-50
[6] Bulk Amorphous Alloys, Practical Characteristics and Applications, Mat. Sci. Fund., vol. 6, Trans. Tech. Pub. Inc., Switzerland, 1999
[7] Métallurgie: du minerai au matériau, Masson, Paris, 1998
[8] J. Non-Cryst. Sol., 351 (2005), pp. 1481-1485
[9] J. Am. Ceram. Soc., 75 (1992) no. 3, pp. 503-506
[10] J. Am. Ceram. Soc., 61 (1978) no. 5–6, pp. 247-249
[11] J. Non-Cryst. Sol., 290 (2001), pp. 180-188
[12] J. Am. Ceram. Soc., 82 (1999) no. 12, pp. 3501-3507
[13] Mat. Res. Bull., 39 (2004), pp. 33-40
[14] Glass Tech., 5 (1964) no. 6, pp. 216-223
[15] Glass Tech., 11 (1970) no. 3, pp. 76-79
[16] J. Non-Cryst. Sol., 12 (1973), pp. 35-45
[17] Phys. Stat. Sol. (a), 77 (1983), pp. 655-668
[18] J. Non-Cryst. Sol., 73 (1985), pp. 305-313
[19] Phys. Chem. Glasses, 27 (1986) no. 1, pp. 1-14
[20] Phys. Chem. Glasses, 45 (2004) no. 1, pp. 37-44
[21] Phys. Chem. Glasses, 2 (1961) no. 3, pp. 69-82
[22] Soviet J. Glass Phys. Chem., 8 (1982), pp. 463-468
[23] W. Capps, D.H. Blackburn, A.A. Edwards, M. Black, Nat. Bur. Stand. Reports, 3978, 4176, 4318, 4417, 4699, 4850 and 5188, 1955–1957
[24] J. Non-Cryst. Sol., 56 (1983), pp. 123-134
[25] J. Am. Ceram. Soc., 3 (1984), p. C46
[26] J. Non-Cryst. Sol., 108 (1989), pp. 187-193
[27] A. Sekkat, S. Etienne, C. Maï, J. Perez, C. Garnier, P. Verdier, Y. Laurent, J. Phys. IV, Coll. C2, Supp. J. Phys. III, vol. 2, 1992, pp. C2-253–256
[28] Mat. Res. Bull., 19 (1984), pp. 227-231
[29] J. Europ. Ceram. Soc., 14 (1994), pp. 261-273
[30] J. Non-Cryst. Sol., 201 (1996), pp. 128-145
[31] J. Non-Cryst. Sol., 208 (1996), pp. 162-169
[32] Ann. Chim. Sci. Mat., 28 (2003), pp. 79-86
[33] J. Non-Cryst. Sol., 333 (2004), pp. 124-128
[34] J. Non-Cryst. Sol., 344 (2004), pp. 8-16
[35] J. Am. Ceram. Soc., 71 (1988) no. 5, pp. 386-390
[36] J. Mat. Res., 6 (1991) no. 12, pp. 2723-2734
[37] J. Am. Ceram. Soc., 79 (1996) no. 8, pp. 2074-2080
[38] J. Sol–Gel Sci. Technol., 14 (1999), pp. 87-94
[39] J. Am. Ceram. Soc., 84 (2001) no. 5, pp. 1052-1058
[40] C. Moysan, R. Riedel, R. Harshe, T. Rouxel, F. Augereau, J. Eur. Ceram. Soc., in press
[41] J. Non-Cryst. Sol., 57 (1983), pp. 423-430
[42] J. Non-Cryst. Sol., 128 (1991), pp. 294-309
[43] J. Am. Ceram. Soc., 83 (2000) no. 4, pp. 855-859
[44] J. Am. Ceram. Soc., 85 (2002) no. 6, pp. 1545-1552
[45] J. Non-Cryst. Sol., 161 (1993), pp. 165-168
[46] J. Non-Cryst. Sol., 27 (1978), pp. 161-172
[47] Planet. Space Sci., 44 (1996) no. 9, pp. 937-944
[48] Phys. Chem. Chem. Phys., 7 (2005), pp. 1423-1431
[49] http://en.wikipedia.org/wiki/Amorphous_ice http://www.lsbu.ac.uk/water/index.html (See also:)
[50] J. Am. Ceram. Soc., 30 (1947), pp. 277-281
[51] Mat. Lett., 18 (1993), pp. 69-72
[52] J. Mat. Sci., 24 (1989), pp. 1539-1542
[53] J. Mat. Sci., 37 (2002), pp. 1309-1313
[54] Chin. J. Phys., 41, 2003 no. 4, pp. 414-421 http://www.ceramics.nist.gov/srd/summary/glspho.htm (See also:)
[55] J. Non-Cryst. Sol., 281 (2001), pp. 221-226
[56] J. Non-Cryst. Sol., 71 (1985), pp. 203-217
[57] Phys. Rev. Lett., 69 (1992) no. 10, pp. 1540-1543
[58] J. Phys. Cond. Matter, 2 (1990), pp. 10227-10234
[59] Acta Met. Mat., 41 (1993) no. 11, pp. 3203-3213
[60] Handbook of Chemistry and Physics (D.R. Lide, ed.), Taylor & Francis, 2005
[61] Glastech. Ber., 22 ( 1948–1949 ), p. 212
[62] Acta Cryst. A, 32 (1976) no. 5, pp. 751-767
[63] Physica A, 339 (2004), pp. 16-23
[64] Phys. Rev. E, 62 (2000) no. 1, pp. 993-1001
[65] J. Non-Cryst. Sol., 34 (1979), pp. 153-181
[66] Phys. Rev. B, 39 (1989), pp. 1270-1279
[67] Mat. Lett., 27 (1996), pp. 1-5
[68] J. Am. Ceram. Soc., 65 (1982) no. 8, p. C-123
[69] Grüneisen 1st rule, Physical Properties of Solid Materials, Wiley Interscience, New York, 1954, p. 90
[70] Phys. Rev. B, 32 (1985) no. 12, pp. 7988-7991
[71] Soviet J. Glass Phys. Chem., 11 (1985), pp. 40-44
[72] J. Mat. Res., 20 (2005), pp. 3404-3412
[73] J. Non-Cryst. Sol., 271 (2000), pp. 224-235
[74] Acta Mat., 50 (2002), pp. 1669-1682
[75] Intermetallics, 10 (2002), pp. 1289-1296
[76] Scripta Mat., 45 (2001), pp. 317-323
[77] J. Non-Cryst. Sol., 316 (2003), pp. 146-152
[78] J. Phys. Chem. Sol., 49 (1988) no. 8, pp. 863-871
Cited by Sources:
Comments - Policy