[Ordonnancement topologique lors des transitions flexible-rigide dans les réseaux désordonnés]
Cette contribution se concentre sur l’origine structurale des transitions de flexible à rigide et une possible phase topologique intermédiaire sous-jacente qui se produisent dans une variété de verres structuraux tels que les chalcogénures ou les oxydes modifiés. Ici, en utilisant des simulations de dynamique moléculaire de liquides vitreux densifiés, 2SiO-NaO, qui sont connus pour présenter une fenêtre de réversibilité en pression lors d’une transition vitreuse numérique, nous nous concentrons sur des corrélations structurales mettant l’accent sur l’ordre topologique en utilisant le formalisme de Bhatia–Thornton. Les résultats révèlent non seulement que les silicates densifiés présentent un ordre topologique sur des échelles de longueur d’environ 25 Å, mais présentent également des comportements de seuil évidents à proximité de la condition isostatique lorsque le réseau subit une transition de flexible à rigide. Le comptage des contraintes mécaniques de la structure du réseau atomique révèle qu’une échelle de longueur typique caractérisant la décroissance des corrélations topologiques émerge pour les systèmes rigides sous-contraints à 3,5 Å, alors que les petites oscillations du vecteur d’onde sont minimales lorsque la condition isostatique est simplement satisfaite. Une analyse supplémentaire basée sur la diffusivité et l’entropie du liquide suggère que le lieu des transitions de flexible à rigide a également des liens avec les anomalies observés dans les liquides tétraédriques densifiés comme l’eau sous pression.
This contribution focuses on the structural origin of flexible to rigid transitions and the possible underlying intermediate phase which have been reported to occur in a variety of network glasses such as chalcogenides or modified oxides. Here, using molecular dynamics simulations of densified glass-forming liquids, 2SiO-NaO, which are known to display a numerical reversibility window as a signature of an intermediate phase, we focus on structural functions emphasizing topological ordering using the Bhatia–Thornton formalism. Results not only reveal that densified silicates display topological ordering on lengthscales of about 25 Å, but also display obvious threshold behaviors close to the isostatic condition when the network undergoes a flexible to rigid transition. The mechanical constraint count of the atomic network structure reveals that a typical lengthscale characterizing the decay of topological correlations emerges for stressed rigid systems at 3.5 Å, whereas small wavevector oscillations are found to be minimal when the isostatic condition is merely satisfied. An additional analysis building on diffusivity and liquid entropy suggests that the locus of flexible to rigid transitions has also connections with water-like anomalies of densified tetrahedral liquids.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : verres, structure, rigidité du réseau, transitions de phase élastiques, simulations de dynamique moléculaire.
Matthieu Micoulaut 1
@article{CRPHYS_2023__24_S1_133_0, author = {Matthieu Micoulaut}, title = {Topological ordering during flexible to rigid transitions in disordered networks}, journal = {Comptes Rendus. Physique}, pages = {133--154}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.128}, language = {en}, }
Matthieu Micoulaut. Topological ordering during flexible to rigid transitions in disordered networks. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 133-154. doi : 10.5802/crphys.128. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.128/
[1] Compositional changes of the first sharp diffraction peak in binary selenide glasses, Phys. Rev. B, Volume 72 (2005) no. 17, 172107 | DOI
[2] Topological versus chemical ordering in network glasses at intermediate and extended length scales, Nature, Volume 435 (2005), pp. 75-78 | DOI
[3] Structure of glassy GeO, J. Phys.: Condens. Matter, Volume 19 (2007) no. 41, 415110 | DOI
[4] Longitudinal Optical Vibrations in Glasses: Ge and Si, Phys. Rev. Lett., Volume 37 (1976) no. 22, pp. 1474-1478 | DOI
[5] Boroxol Rings in Liquid and Vitreous from First Principles, Phys. Rev. Lett., Volume 101 (2008) no. 6, 065504 | DOI
[6] Rigidity transitions in glasses driven by changes in network dimensionality and structural groupings, Eur. Phys. Lett., Volume 108 (2014) no. 5, 56001 | DOI
[7] Challenges and opportunities in atomistic simulations of glasses: a review, Comptes Rendus. Géoscience (2022) (Online first) | DOI
[8] L. On the calculation of the equilibrium and stiffness of frames, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Volume 27 (1864) no. 182, pp. 294-299 | DOI
[9] Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, J. Non Cryst. Solids, Volume 34 (1979) no. 2, pp. 153-181 | DOI
[10] Continuous deformations in random networks, J. Non Cryst. Solids, Volume 57 (1983) no. 3, pp. 355-370 | DOI
[11] Glass-forming tendency, percolation of rigidity, and onefold-coordinated atoms in covalent networks, Phys. Rev. B, Volume 50 (1994) no. 14, pp. 10366-10368 | DOI
[12] The Central Role of Broken Bond-Bending Constraints in Promoting Glass Formation in the Oxides, Science, Volume 266 (1994) no. 5189, pp. 1355-1357 | DOI
[13] Amorphous materials: Properties, structure, and durability: Constrained interactions, rigidity, adaptative networks, and their role for the description of silicates, Am. Mineral., Volume 93 (2008) no. 11-12, pp. 1732-1748 | DOI
[14] Search for a possible flexible-to-rigid transition in models of phase change materials, Phys. Rev. B, Volume 103 (2021) no. 13, 134206 | DOI
[15] Self-organization in network glasses, J. Non Cryst. Solids, Volume 266-269 (2000), pp. 859-866 | DOI
[16] Elastic Properties of Glasses, Phys. Rev. Lett., Volume 54 (1985) no. 19, pp. 2107-2110 | DOI
[17] Vibrational densities of states and network rigidity in chalcogenide glasses, Phys. Rev. B, Volume 44 (1991) no. 1, pp. 94-100 | DOI
[18] Direct Evidence for Stiffness Threshold in Chalcogenide Glasses, Phys. Rev. Lett., Volume 78 (1997) no. 23, pp. 4422-4425 | DOI
[19] Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids, Phys. Rev. B, Volume 45 (1992) no. 17, pp. 10091-10094 | DOI
[20] Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox, Phys. Rev. Lett., Volume 64 (1990) no. 13, pp. 1549-1552 | DOI
[21] Superstrong nature of covalently bonded glass-forming liquids at select compositions, J. Chem. Phys., Volume 139 (2013) no. 16, 164511 | DOI
[22] Crucial effect of melt homogenization on the fragility of non-stoichiometric chalcogenides, J. Chem. Phys., Volume 140 (2014) no. 13, 134501 | DOI
[23] Direct evidence of rigidity loss and self-organization in silicate glasses, J. Phys.: Condens. Matter, Volume 17 (2005) no. 32, pp. 4889-4896 | DOI
[24] Fast-Ion Conduction and Flexibility of Glassy Networks, Phys. Rev. Lett., Volume 98 (2007) no. 19, 195501 | DOI
[25] Direct Evidence of a Characteristic Length Scale of a Dynamical Nature in the Boolchand Phase of Glasses, Phys. Rev. Lett., Volume 105 (2010) no. 23, 235504 | DOI
[26] Fast-ion conduction and flexibility and rigidity of solid electrolyte glasses, Phys. Rev. B, Volume 80 (2009) no. 18, p. 184205 | DOI
[27] Evolution of Covalent Networks under Cooling: Contrasting the Rigidity Window and Jamming Scenarios, Phys. Rev. Lett., Volume 113 (2014) no. 21, 215504 | DOI
[28] Percolative heterogeneous topological constraints and fragility in glass-forming liquids, Eur. Phys. Lett., Volume 104 (2013) no. 5, 56002 | DOI
[29] Evidence for Anomalous Dynamic Heterogeneities in Isostatic Supercooled Liquids, Phys. Rev. Lett., Volume 118 (2017) no. 14, 145502 | DOI
[30] Concepts and applications of rigidity in non-crystalline solids: a review on new developments and directions, ADV PHYS-X, Volume 1 (2016) no. 2, pp. 147-175 | DOI
[31] Adaptability and “Intermediate Phase” in Randomly Connected Networks, Phys. Rev. Lett., Volume 94 (2005) no. 20, 208701 | DOI
[32] Rings and rigidity transitions in network glasses, Phys. Rev. B, Volume 67 (2003) no. 10, 104204 | DOI
[33] Rigidity and intermediate phases in glasses driven by speciation, Phys. Rev. B, Volume 74 (2006) no. 18, 184208 | DOI
[34] Self-organized criticality in the intermediate phase of rigidity percolation, Phys. Rev. E, Volume 75 (2007) no. 5, 056108 | DOI | MR
[35] Entropy favors heterogeneous structures of networks near the rigidity threshold, Nat. Commun., Volume 9 (2018) no. 1, 1359 | DOI
[36] Two rigidity-percolation transitions on binary Bethe networks and the intermediate phase in glass, Phys. Rev. E, Volume 88 (2013) no. 6, 062121 | DOI
[37] Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour, Nat. Commun., Volume 6 (2015) no. 1, p. 6398 | DOI
[38] Pressure Raman effects and internal stress in network glasses, Phys. Rev. B, Volume 71 (2005) no. 17, 174201 | DOI
[39] Melt Homogenization and Self-Organization in Chalcogenides-Part II, Int. J. Appl. Glass Sci., Volume 3 (2012) no. 3, pp. 205-220 | DOI
[40] Dynamic and stress signatures of the rigid intermediate phase in glass-forming liquids, J. Chem. Phys., Volume 152 (2020) no. 22, 221101 | DOI
[41] Evidence of an intermediate phase in a quaternary Ag bearing telluride glass system using alternating DSC, Solid State Commun., Volume 177 (2014), pp. 108-112 | DOI
[42] Stiffness transitions in glasses from Raman scattering and temperature-modulated differential scanning calorimetry, Phys. Rev. B, Volume 61 (2000) no. 22, pp. 15061-15076 | DOI
[43] Topological origin of fragility, network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GeS glasses, J. Phys. Chem. B, Volume 118 (2014) no. 8, pp. 2249-2263 | DOI
[44] Linking Melt Dynamics With Topological Phases and Molecular Structure of Sodium Phosphate Glasses From Calorimetry, Raman Scattering, and Infrared Reflectance, Front. Mater., Volume 6 (2019) | DOI
[45] Abrupt boundaries of intermediate phases and space filling in oxide glasses, J. Phys.: Condens. Matter, Volume 20 (2008) no. 20, 202101 | DOI
[46] Manifestation of intermediate phase in mechanical properties: Nano-indentation studies on Ge-Te-Si bulk chalcogenide glasses, Solid State Commun., Volume 152 (2012) no. 24, pp. 2181-2184 | DOI
[47] Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks, J. Appl. Phys., Volume 115 (2014) no. 16, 164905 | DOI
[48] Elastic Phases of GeSbSe Ternary Glasses Driven by Topology, J. Phys. Chem. B, Volume 117 (2013) no. 34, pp. 10027-10034 | DOI
[49] The thermally reversing window in ternary GeAsS glasses, J. Phys.: Condens. Matter, Volume 16 (2004) no. 44, p. S5121-S5138 | Zbl
[50] Ageing, fragility and the reversibility window in bulk alloy glasses, J. Phys.: Condens. Matter, Volume 17 (2004) no. 1, p. L1-L7 | DOI
[51] Shift in elastic phase boundaries due to nanoscale phase separation in network glasses: the case of GeAsS, Philos. Mag., Volume 85 (2005) no. 8, pp. 875-884 | DOI
[52] Evidence for a Correlation of Melt Fragility Index With Topological Phases of Multicomponent Glasses, Front. Mater., Volume 6 (2019) | DOI
[53] Sharp Rigid to Floppy Phase Transition Induced by Dangling Ends in a Network Glass, Phys. Rev. Lett., Volume 87 (2001) no. 18, 185503 | DOI
[54] Chemical alloying and light-induced collapse of intermediate phases in chalcohalide glasses, J. Phys.: Condens. Matter, Volume 19 (2007) no. 22, 226201 | Zbl
[55] Intermediate Phases, structural variance and network demixing in chalcogenides: The unusual case of group V sulfides, J. Non Cryst. Solids, Volume 355 (2009) no. 37-42, pp. 1773-1785 (Non-Oxide and New Optical Glasses 16) | DOI
[56] The self-organized phase of bulk PSe glasses, Eur. Phys. Lett., Volume 62 (2003) no. 1, pp. 49-55 | DOI
[57] Correlating Melt Dynamics and Configurational Entropy Change With Topological Phases of AsS100 Glasses and the Crucial Role of Melt/Glass Homogenization, Front. Mater., Volume 6 (2019) | DOI
[58] Cycling through the glass transition: Evidence for reversibility windows and dynamic anomalies, Phys. Rev. B, Volume 92 (2015) no. 13, 134201 | DOI
[59] Network Rigidity and Properties of and Glasses under Pressure, Phys. Rev. Lett., Volume 93 (2004) no. 13, 135502 | DOI
[60] Anomalies of the first sharp diffraction peak in network glasses: Evidence for correlations with dynamic and rigidity properties, Phys. Status Solidi B Basic Res., Volume 250 (2013) no. 5, pp. 976-982 | DOI
[61] Intermediate-range order in glassy GeSe around the stiffness transition composition, J. Non Cryst. Solids, Volume 337 (2004) no. 1, pp. 54-61 | DOI | Zbl
[62] Mesoscopic organization and structural phases in network-forming GeSe glasses, Physica B Condens. Matter, Volume 357 (2005) no. 3, pp. 290-298 | DOI
[63] Search for a structural response to the intermediate phase in glasses, Phys. Rev. B, Volume 77 (2008) no. 9, 094134 | DOI
[64] Bimodal phase percolation model for the structure of Ge-Se glasses and the existence of the intermediate phase, Phys. Rev. B, Volume 80 (2009) no. 21, 214114 | DOI
[65] Structure, Connectivity, and Configurational Entropy of GeSe Glasses: Results from Se MAS NMR Spectroscopy, J. Phys. Chem. C, Volume 114 (2010) no. 18, pp. 8601-8608 | DOI
[66] Structural origin of the intermediate phase in Ge–Se glasses, Appl. Phys. Lett., Volume 97 (2010) no. 13, 131901 | DOI
[67] Topological Ordering and Viscosity in the Glass-Forming Ge-Se System: The Search for a Structural or Dynamical Signature of the Intermediate Phase, Front. Mater., Volume 4 (2017) | DOI
[68] An intermediate phase in GeSe glasses: experiment and simulation, J. Phys.: Condens. Matter, Volume 19 (2007) no. 45, 455206 | DOI
[69] Compositional Thresholds and Anomalies in Connection with Stiffness Transitions in Network Glasses, Phys. Rev. Lett., Volume 110 (2013) no. 16, 165501 | DOI
[70] Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics, J. Chem. Phys., Volume 141 (2014) no. 19, 194506 | DOI
[71] Structural properties of Ge-S amorphous networks in relationship with rigidity transitions: An ab initio molecular dynamics study, Phys. Rev. B, Volume 96 (2017) no. 9, 094205 | DOI
[72] Thermodynamic precursors, liquid-liquid transitions, dynamic and topological anomalies in densified liquid germania, J. Chem. Phys., Volume 143 (2015) no. 6, 064502 | DOI
[73] Transport Anomalies and Adaptative Pressure-Dependent Topological Constraints in Tetrahedral Liquids: Evidence for a Reversibility Window Analogue, Phys. Rev. Lett., Volume 110 (2013) no. 9, 095501 | DOI
[74] Model investigations of network-forming materials, Phys. Chem. Chem. Phys., Volume 14 (2012) no. 37, pp. 12701-12714 | DOI
[75] Sodium ion migration mechanisms in silicate glasses probed by molecular dynamics simulations, J. Non Cryst. Solids, Volume 323 (2003) no. 1, pp. 147-154 | DOI
[76] The medium range structure of sodium silicate glasses: a molecular dynamics simulation, J. Non Cryst. Solids, Volume 349 (2004), pp. 66-79 (Glass Science for High Technology. 16th University Conference on Glass Science) | DOI
[77] Density-stiffness scaling in minerals upon disordering: Irradiation vs. vitrification, Acta Mater., Volume 166 (2019), pp. 611-617 | DOI
[78] Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: The role of the potential, J. Chem. Phys., Volume 141 (2014) no. 2, 024507 | DOI
[79] Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study, J. Non Cryst. Solids, Volume 352 (2006) no. 30, pp. 3255-3269 | DOI
[80] Viscosity and viscosity anomalies of model silicates and magmas: A numerical investigation, Chem. Geol., Volume 346 (2013), pp. 47-56 (9 Silicate Melts Workshop) | DOI
[81] Zeolites versus aluminosilicate clusters: the validity of a local description, J. Am. Chem. Soc., Volume 113 (1991) no. 17, pp. 6435-6441 | DOI
[82] Atomic scale foundation of temperature-dependent bonding constraints in network glasses and liquids, J. Non Cryst. Solids, Volume 357 (2011) no. 14, pp. 2530-2537 | DOI
[83] Structure, topology, rings, and vibrational and electronic properties of GeSe glasses across the rigidity transition: A numerical study, Phys. Rev. B, Volume 88 (2013) no. 5, 054203 | DOI
[84] Revealing the role of molecular rigidity on the fragility evolution of glass-forming liquids, Nat. Commun., Volume 7 (2016), 11086 | DOI
[85] Structural Aspects of the Electrical Resistivity of Binary Alloys, Phys. Rev. B, Volume 2 (1970) no. 8, pp. 3004-3012 | DOI
[86] Two conceptualizations of the partial structures and of the order parameters in the ternary alloy and relationships between them, J. Non Cryst. Solids, Volume 566 (2021), 120894 | DOI
[87] Asymptotic decay of correlations in liquids and their mixtures, J. Chem. Phys., Volume 100 (1994) no. 1, pp. 591-603 | DOI
[88] Power-law scaling and fractal nature of medium-range order in metallic glasses, Nature Mater., Volume 8 (2009), pp. 30-34 | DOI
[89] Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering, Phys. Rev. B, Volume 33 (1986) no. 1, pp. 269-275 | DOI
[90] Theory of Simple Liquids, Cambridge University Press, 1976
[91] Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach, Phys. Chem. Chem. Phys., Volume 15 (2013) no. 37, pp. 15286-15308 | DOI
[92] The decay of correlations in ionic fluids, Mol. Phys., Volume 83 (1994) no. 4, pp. 619-654 | DOI
[93] Decay of the pair correlations and small-angle scattering for binary liquids and glasses, J. Phys.: Condens. Matter, Volume 18 (2006) no. 2, 11443 | DOI
[94] Ionic fluids with pair interactions have power-law electrostatic screening, J. Phys. A, Math. Gen., Volume 38 (2005) no. 24, pp. 5405-5424 | DOI | MR | Zbl
[95] Homogeneous and inhomogeneous hard-sphere mixtures: manifestations of structural crossover, Mol. Phys., Volume 103 (2005) no. 21-23, pp. 3009-3023 | DOI
[96] Angular rigidity in tetrahedral network glasses with changing composition, Phys. Rev. B, Volume 84 (2011) no. 5, 054201 | DOI
[97] Relationship between structural order and the anomalies of liquid water, Nature, Volume 409 (2001), pp. 318-321 | DOI
[98] Molecular structural order and anomalies in liquid silica, Phys. Rev. E, Volume 66 (2002) no. 1, 011202 | DOI
[99] Tetrahedral order, pair correlation entropy, and waterlike liquid state anomalies: Comparison of GeO with BeF, SiO, and HO, J. Chem. Phys., Volume 132 (2010) no. 23, 234507 | DOI
[100] Entropy, diffusivity, and structural order in liquids with waterlike anomalies, J. Chem. Phys., Volume 125 (2006) no. 20, 204501 | DOI
[101] Ionic melts with waterlike anomalies: Thermodynamic properties of liquid BeF2, J. Chem. Phys., Volume 127 (2007) no. 16, 164502 | DOI
Cité par Sources :
Commentaires - Politique