Comptes Rendus
Macroscale turbulence modeling for flows in media laden with solid structures
Comptes Rendus. Mécanique, Volume 335 (2007) no. 1, pp. 13-19.

The spatially averaged balance equation of the turbulent kinetic energy is derived for flows in media laden with solid structures. Two additional contributions are highlighted: sub-filter production and dispersion. The sub-filter production is tightly linked to the drag force and to the wake dissipation. Within the framework of the plane channel flow, we then analyse magnitudes of the various contributions to the spatially averaged equation of the turbulent kinetic energy. We postulate a balance equation for the spatially averaged turbulent dissipation rate. Finally, we propose a model for the characteristic time scale of the sub-filter production.

L'équation de bilan de l'énergie cinétique turbulente spatialement moyennée est établie pour un écoulement dans un mileu encombré de structures solides. Deux termes supplémentaires sont mis en évidence dans cette équation : la production de sous-filtre et la dispersion. La production de sous-filtre est étroitement liée à la force de trainée et à la dissipation de sillage. Nous étudions ensuite les différentes contributions au bilan d'énergie cinétique turbulente spatialement moyennée, pour un écoulement dans un canal plan. Le temps caractéristique associé à la production de sous-filtre est étudié en postulant une équation bilan du taux de dissipation moyenné spatialement.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2006.11.003
Keywords: Fluid mechanics, Turbulent flows, $ k\text{–}\epsilon $ model, Ordered porous media, Plane channel
Mot clés : Mécanique des fluides, Écoulements turbulents, Modèle $ k\text{–}\epsilon $, Milieux poreux ordonnés, Canal plan

François Pinson 1; Olivier Grégoire 1; Olivier Simonin 2

1 DEN/DM2S/SFME/LETR, CEA Saclay, 91191 Gif sur Yvette cedex, France
2 IMFT, allée du Pr. Camille-Soula, 31400 Toulouse, France
@article{CRMECA_2007__335_1_13_0,
     author = {Fran\c{c}ois Pinson and Olivier Gr\'egoire and Olivier Simonin},
     title = {Macroscale turbulence modeling for flows in media laden with solid structures},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {13--19},
     publisher = {Elsevier},
     volume = {335},
     number = {1},
     year = {2007},
     doi = {10.1016/j.crme.2006.11.003},
     language = {en},
}
TY  - JOUR
AU  - François Pinson
AU  - Olivier Grégoire
AU  - Olivier Simonin
TI  - Macroscale turbulence modeling for flows in media laden with solid structures
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 13
EP  - 19
VL  - 335
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2006.11.003
LA  - en
ID  - CRMECA_2007__335_1_13_0
ER  - 
%0 Journal Article
%A François Pinson
%A Olivier Grégoire
%A Olivier Simonin
%T Macroscale turbulence modeling for flows in media laden with solid structures
%J Comptes Rendus. Mécanique
%D 2007
%P 13-19
%V 335
%N 1
%I Elsevier
%R 10.1016/j.crme.2006.11.003
%G en
%F CRMECA_2007__335_1_13_0
François Pinson; Olivier Grégoire; Olivier Simonin. Macroscale turbulence modeling for flows in media laden with solid structures. Comptes Rendus. Mécanique, Volume 335 (2007) no. 1, pp. 13-19. doi : 10.1016/j.crme.2006.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.11.003/

[1] A. Nakayama; F. Kuwahara A macroscopic turbulence model for flow in a porous media, J. Fluid Eng.-T ASME, Volume 121 (1996), p. 427

[2] M.H.J. Pedras; M.J.S. De Lemos Macroscopic turbulence modeling for incompressible flow through undeformable porous media, Internat. J. Heat Mass Transfer, Volume 44 (2001), p. 1081

[3] J. Liu; J.M. Chen; T.A. Black; M.D. Novak Eϵ modelling of turbulent air flow downwind of a model forest edge, Bound.-Layer Meteorol., Volume 77 (1996), p. 21

[4] M. Quintard; S. Whitaker Transport in ordered and disordered porous media I: the cellular average and the use of weighting functions, Transport Porous Med., Volume 14 (1994), p. 163

[5] M. Quintard; S. Whitaker Transport in ordered and disordered porous media II: generalized volume averaging, Transport Porous Med., Volume 14 (1994), p. 179

[6] D.A. Nield Alternative models of turbulence in a porous medium and related matters, J. Fluid Eng.-T ASME, Volume 123 (2001), p. 928

[7] V.S. Travkin Discussion: alternative models of turbulence in a porous medium and related matters, J. Fluid Eng.-T ASME, Volume 123 (2001), p. 931

[8] S. Whitaker Diffusion and dispersion in porous media, AIChE, Volume 13 (1967) no. 3, p. 420

[9] F. Pinson, O. Grégoire, O. Simonin, kε modeling of turbulence in porous media based on a two-scale analysis, in: International Symposium on Engineering Turbulence Modelling and Measurements—ETMM6, ERCOFTAC (2005)

[10] S.R. Green Modelling turbulent air flow in a stand of widely-spaced trees, PHOENICS J. Comp. Fluid Dynam. Appl., Volume 5 (1992), p. 294

[11] www-cast3m.cea.fr (CAST3M documentation and downloads)

[12] B.J. Daly; F.H. Harlow Transport equations in turbulence, Phys. Fluids, Volume 13 (1970) no. 11, p. 2634

[13] G. Comte-Bellot, Ecoulement turbulent entre deux parois parallèles, Publications scientifiques et techniques du Ministère de l'Air (1965)

Cited by Sources:

Comments - Policy