L'objet de cette Note est l'étude du problème de contact entre une plaque élastique, encastrée sur ses bords, placée au dessus d'un obstacle ψ et soumise à un champ de forces perpendiculaires au plan de la plaque . Le problème d'obstacle consiste à trouver la forme de la plaque u et l'ensemble de contact entre la plaque et l'obstacle. Dans un premier temps nous présentons un résultat qui généralise au cas des plaques un théorème de régularité de la zone de contact que D. Kinderlehrer et G. Stampacchia avaient établi pour des membranes en dimension 2. Après quoi, nous donnons un résultat de stabilité qui relie les évolutions de la zone de contact à celles des forces extérieures.
This Note deals with the contact problem between an elastic plate and a rigid obstacle ψ. The plate is clamped at its edges and submitted to vertical forces . The obstacle problem consists in finding the shape of the plate u and the contact set between the plate and the obstacle. In a first step, we give a result, which we extend to the case of plates, a theorem established by D. Kinderlehrer and G. Stampacchia dealing with the smoothness of the contact set in the case of a two-dimensional membrane. In a second step, we give a stability theorem which links the changes of the external forces to the changes of the contact set.
Accepté le :
Publié le :
Keywords: Dynamics of rigid or flexible systems, Contact problem
Alain Léger 1 ; Cédric Pozzolini 1
@article{CRMECA_2007__335_3_144_0, author = {Alain L\'eger and C\'edric Pozzolini}, title = {Sur la zone de contact entre une plaque \'elastique et un obstacle rigide}, journal = {Comptes Rendus. M\'ecanique}, pages = {144--149}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2007}, doi = {10.1016/j.crme.2007.01.007}, language = {fr}, }
Alain Léger; Cédric Pozzolini. Sur la zone de contact entre une plaque élastique et un obstacle rigide. Comptes Rendus. Mécanique, Volume 335 (2007) no. 3, pp. 144-149. doi : 10.1016/j.crme.2007.01.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.01.007/
[1] Some examples of singularities in free boundary, Ann. Scuola Norm. Sup. Pisa (4), Volume 4 (1976), pp. 131-144
[2] An example of generic regularity for non-linear elliptic equation, Arch. Rat. Mach. Anal., Volume 57 (1974), pp. 134-141
[3] On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 359-389
[4] An Introduction to Variational Inequalities and Their Applications, Academics Press, New York, 1980
[5] A stability theorem for the obstacle problem, Adv. Math., Volume 16 (1975), pp. 34-47
[6] A regularity result for polyharmonic variational inequalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa (1984), pp. 87-122
[7] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. II, Volume XVII (1964), pp. 35-92
[8] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Volume R-2 (1974), pp. 129-151
[9] Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa, Volume 34 (1978), pp. 86-119
[10] Fondations of Modern Potential Theory, Springer-Verlag, New York, 1972
Cité par Sources :
Commentaires - Politique