We model a planar polyarticulated system by points defining the joints and a last point linked to the last solid. The surface swept by the point has its boundary defined by 3 kinds of particular configurations. These curves can be geometrically determined.
On modélise un système polyarticulé plan par les points définissant les articulations et un dernier point lié au dernier corps. L'espace balayé par le point a sa frontière définie par 3 types de courbes correspondants à des configurations singulières. Ces courbes peuvent être déterminées géométriquement.
Accepted:
Published online:
Keywords: Biomechanics, Workspace, Boundary, Swept surface, Rank of Jacobian
Jérôme Bastien 1, 2; Pierre Legreneur 2; Karine Monteil 2
@article{CRMECA_2007__335_3_181_0, author = {J\'er\^ome Bastien and Pierre Legreneur and Karine Monteil}, title = {Caract\'erisation g\'eom\'etrique de la fronti\`ere de l'espace de travail d'un syst\`eme polyarticul\'e dans le plan}, journal = {Comptes Rendus. M\'ecanique}, pages = {181--186}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2007}, doi = {10.1016/j.crme.2007.03.001}, language = {fr}, }
TY - JOUR AU - Jérôme Bastien AU - Pierre Legreneur AU - Karine Monteil TI - Caractérisation géométrique de la frontière de l'espace de travail d'un système polyarticulé dans le plan JO - Comptes Rendus. Mécanique PY - 2007 SP - 181 EP - 186 VL - 335 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2007.03.001 LA - fr ID - CRMECA_2007__335_3_181_0 ER -
%0 Journal Article %A Jérôme Bastien %A Pierre Legreneur %A Karine Monteil %T Caractérisation géométrique de la frontière de l'espace de travail d'un système polyarticulé dans le plan %J Comptes Rendus. Mécanique %D 2007 %P 181-186 %V 335 %N 3 %I Elsevier %R 10.1016/j.crme.2007.03.001 %G fr %F CRMECA_2007__335_3_181_0
Jérôme Bastien; Pierre Legreneur; Karine Monteil. Caractérisation géométrique de la frontière de l'espace de travail d'un système polyarticulé dans le plan. Comptes Rendus. Mécanique, Volume 335 (2007) no. 3, pp. 181-186. doi : 10.1016/j.crme.2007.03.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.03.001/
[1] J.F.M. Molenbroek, Reach envelopes of older adults, in: The 42nd Annual Meeting of the “Human Factors and Ergonomics Society”, Chicago, USA, Oct 5–9 1998, pp. 166–170
[2] On the determination of boundaries to manipulator workspaces, Robotic Comput. Integrated Manufacturing, Volume 13 (1997) no. 1, pp. 63-72
[3] Geometric representation of the swept volume using Jacobian rank-deficiency conditions, Computer Aided Design, Volume 29 (1997) no. 6, pp. 457-468
[4] Swept volumes: void and boundary identification, Computer Aided Design, Volume 30 (1998) no. 13, pp. 1009-1018
[5] Towards understanding the workspace of human limbs, Ergonomics, Volume 47 (2004) no. 13, pp. 1386-1405
[6] E. Dupuis, E. Papadopoulos, V. Hayward, The singular vector algorithm for the computation of rank—deficiency loci of rectangular Jacobians, in: International Conference on Intelligent Robots and Systems, Maui, Hawai, USA, Oct 29–Nov 03 2001
[7] J. Bastien, P. Legreneur, K. Monteil, A new geometrical characterisation of the boundaries of plane workspaces, Europ. J. Mech. Solids A (2006), soumis pour publication
[8] A multi-level optimization methodology for determining the dextrous workspaces of planar parallel manipulators, Struct. Multidiscip. Optim., Volume 30 (2005) no. 6, pp. 422-427
[9] The chord method for the determination of nonconvex workspaces of planar parallel manipulators, Comput. Math. Appl., Volume 43 (2002) no. 8–9, pp. 1135-1151
[10] The determination of nonconvex workspaces of generally constrained planar Stewart platforms, Comput. Math. Appl., Volume 40 (2000) no. 8–9, pp. 1043-1060
[11] Formulation of the workspace equation for wrist-partitioned spatial manipulators, Mechanism Machine Theory, Volume 41 (2006) no. 7, pp. 778-789
[12] A computational geometry approach for determination of boundary of workspaces of planar manipulators with arbitrary topology, Mechanism Machine Theory, Volume 34 (1999), pp. 149-169
[13] I. Ebrahimi, J.A. Carretero, R. Boudreau, 3-PRRR redundant planar parallel manipulator: Inverse displacement, workspace and singularity analyses, Mechanism Machine Theory (2006), in press
[14] Workspaces of planar parallel manipulators, Mechanism Machine Theory, Volume 33 (1998) no. 1–2, pp. 7-20
Cited by Sources:
Comments - Policy