Comptes Rendus
Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence
[Intermittence et universalité d'un modèle lagrangien des gradients de vitesse en turbulence 3D]
Comptes Rendus. Mécanique, Volume 335 (2007) no. 4, pp. 187-193.

Le caractère universel du phénomène d'intermittence en turbulence est étudié à partir d'un modèle récent régissant l'évolution du tenseur des gradients de vitesse. Trois versions possibles du modèle, pour lesquelles les hypothèses retenues pour le temps de corrélation et l'amplitude du forçage sont différentes, sont analysées. Une intégration numérique des équations montre que les exposants anormaux des moments relatifs sont les mêmes pour les trois variantes du modèle. Il est de plus montré que les gradients transversaux de vitesse sont plus intermittents que les longitudinaux alors que la dissipation et l'enstrophie se comportent comme des lois de puissance de même exposant. Ces résultats sont cohérents avec l'universalité des exposants relatifs et suggèrent l'importance du terme d'auto-étirement, qui est identique dans les trois variantes du modèle.

The universality of intermittency in hydrodynamic turbulence is considered based on a recent model for the velocity gradient tensor evolution. Three possible versions of the model are investigated differing in the assumed correlation time-scale and forcing strength. Numerical tests show that the same (universal) anomalous relative scaling exponents are obtained for the three model variants. It is also found that transverse velocity gradients are more intermittent than longitudinal ones, whereas dissipation and enstrophy scale with the same exponents. The results are consistent with the universality of intermittency and relative scaling exponents, and suggest that these are dictated by the self-stretching terms that are the same in each variant of the model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2007.03.002
Keywords: Turbulence, Intermittency, Geometry
Mot clés : Turbulence, Intermittence, Géométrie
Laurent Chevillard 1 ; Charles Meneveau 1

1 Department of Mechanical Engineering, the Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
@article{CRMECA_2007__335_4_187_0,
     author = {Laurent Chevillard and Charles Meneveau},
     title = {Intermittency and universality in a {Lagrangian} model of velocity gradients in three-dimensional turbulence},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {187--193},
     publisher = {Elsevier},
     volume = {335},
     number = {4},
     year = {2007},
     doi = {10.1016/j.crme.2007.03.002},
     language = {en},
}
TY  - JOUR
AU  - Laurent Chevillard
AU  - Charles Meneveau
TI  - Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 187
EP  - 193
VL  - 335
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2007.03.002
LA  - en
ID  - CRMECA_2007__335_4_187_0
ER  - 
%0 Journal Article
%A Laurent Chevillard
%A Charles Meneveau
%T Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence
%J Comptes Rendus. Mécanique
%D 2007
%P 187-193
%V 335
%N 4
%I Elsevier
%R 10.1016/j.crme.2007.03.002
%G en
%F CRMECA_2007__335_4_187_0
Laurent Chevillard; Charles Meneveau. Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence. Comptes Rendus. Mécanique, Volume 335 (2007) no. 4, pp. 187-193. doi : 10.1016/j.crme.2007.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.03.002/

[1] P. Vieillefosse Internal motion of a small element of fluid in an inviscid flow, Physica A, Volume 125 (1984), p. 150

[2] B.J. Cantwell Exact solution of a restricted Euler equation for the velocity gradient, Phys. Fluids A, Volume 4 (1992), p. 782

[3] F. van der Bos; B. Tao; C. Meneveau; J. Katz Effects of small-scale turbulent motions on the filtered velocity gradient tensor as deduced from holographic particle image velocimetry measurements, Phys. Fluids, Volume 14 (2002), p. 2457

[4] B.W. Zeff; D.D. Lanterman; R. McAllister; R. Roy; E.J. Kostelich; D.P. Lathrop Measuring intense rotation and dissipation in turbulent flows, Nature, Volume 421 (2003), p. 146

[5] B.J. Cantwell On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence, Phys. Fluids A, Volume 5 (1993), p. 2008

[6] Y. Li; C. Meneveau Intermittency trends and Lagrangian evolution of non-Gaussian statistics in turbulent flow and scalar transport, J. Fluid Mech., Volume 558 (2006), p. 133

[7] S.S. Girimaji; S.B. Pope A diffusion model for velocity gradients in turbulence, Phys. Fluids A, Volume 2 (1990), p. 242

[8] M. Chertkov; A. Pumir; B.I. Shraiman Lagrangian tetrad dynamics and the phenomenology of turbulence, Phys. Fluids, Volume 11 (1999), p. 2394

[9] E. Jeong; S.S. Girimaji Velocity-gradient dynamics in turbulence: effect of viscosity and forcing, Theor. Comput. Fluid Dynam., Volume 16 (2003), p. 421

[10] L. Chevillard; C. Meneveau Lagrangian dynamics and statistical geometric structure of turbulence, Phys. Rev. Lett., Volume 97 (2006), p. 174501

[11] M. Nelkin Multifractal scaling of velocity derivatives in turbulence, Phys. Rev. A, Volume 42 (1990), p. 7226

[12] U. Frisch Turbulence, Cambridge Univ. Press, Cambridge, 1995

[13] L. Chevillard; B. Castaing; E. Lévêque; A. Arneodo Unified multifractal description of velocity increments statistics in turbulence: Intermittency and skewness, Physica D, Volume 218 (2006), p. 77

[14] B. Dhruva; Y. Tsuji; K.R. Sreenivasan Transverse structure functions in high-Reynolds-number turbulence, Phys. Rev. E, Volume 56 (1997), p. R4928

[15] P.K. Yeung; S.B. Popem; B.L. Sawford Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence, J. Turbulence, Volume 7 (2006), p. 58

[16] G. Paladin; A. Vulpiani Degrees of freedom of turbulence, Phys. Rev. A, Volume 35 (1987), p. 1971

[17] C. Meneveau; K.R. Sreenivasan; P. Kailasnath; M.S. Fan Joint multifractal measures: Theory and applications to turbulence, Phys. Rev. A, Volume 41 (1990), p. 894

[18] C. Meneveau; K.R. Sreenivasan The multifractal nature of turbulent energy dissipation, J. Fluid Mech., Volume 224 (1991), p. 429

[19] K.R. Sreenivasan; C. Meneveau Singularities of the equations of fluid motion, Phys. Rev. A, Volume 38 (1988), p. 6287

[20] C. Meneveau; M. Nelkin Attractor size in intermittent turbulence, Phys. Rev. A, Volume 39 (1989), p. 3732

[21] M.S. Borgas The multifractal Lagrangian nature of turbulence, Phil. Trans. R. Soc. Lond. A, Volume 342 (1993), p. 379

[22] X.-Q. Jiang; H. Gong; J.-K. Liu; M.-D. Zhou; Z.-S. She Hierarchical structures in a turbulent free shear flow, J. Fluid Mech., Volume 569 (2006), p. 259

[23] L. Biferale; I. Procaccia Anisotropy in turbulent flows and in turbulent transport, Phys. Rep., Volume 414 (2005), p. 43

[24] S. Chen; K.R. Sreenivasan; M. Nelkin; N. Cao Refined similarity hypothesis for transverse structure functions in fluid turbulence, Phys. Rev. Lett., Volume 79 (1997), p. 2253

[25] M. Nelkin Enstrophy and dissipation must have the same scaling exponent in the high Reynolds number limit of fluid turbulence, Phys. Fluids, Volume 11 (1999), p. 2202

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows

Laurent Chevillard; Bernard Castaing; Alain Arneodo; ...

C. R. Phys (2012)


Corrigendum to the Note “Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence” [C. R. Mecanique 335 (4) (2007) 187–193]

Laurent Chevillard; Charles Meneveau

C. R. Méca (2007)


The Lundgren–Monin–Novikov hierarchy: Kinetic equations for turbulence

Rudolf Friedrich; Anton Daitche; Oliver Kamps; ...

C. R. Phys (2012)