The relation between density and velocity of pedestrian movement has so far mainly been analysed using an empirical approach and fundamental relations found from the fitting of experimental measurements of the main quantities. The present study proposes a phenomenological model that is able to distinguish and take into account various factors that can affect the density–velocity relation by means of the induced microscopic walking phenomena. In particular, the effect of the lateral vibrations of the platform on which pedestrians walk is considered in the light of the use of the fundamental diagrams within a crowd–structure interaction model applied to lively footbridges. A comparison with some of the empirical fundamental laws shows an excellent agreement, demonstrating that the main walking phenomena are correctly assumed in the present model.
La relation entre la densité et la vitesse des piétons a été principalement étudiée jusqu'au présent à travers une approche empirique et les lois fondamentales obtenues à partir de mesures expérimentales directes des grandeurs concernées. Cette étude propose un modèle phénoménologique capable de distinguer et de prendre en compte plusieurs facteurs qui peuvent affecter la relation densité–vitesse par le biais des phénomènes microscopiques engendrés. En particulier, l'effet des vibrations latérales de la plate-forme sur laquelle le piétons marche a été introduit en vue de l'utilisation de la loi fondamentale dans le cadre d'un modèle d'interaction piétons–structure appliqué aux passerelles piétonnes flexibles. La comparaison avec certaines des lois fondamentales empiriques montre un excellent accord et démontre que les principaux phénomènes sont correctement pris en compte par le modèle proposé.
Accepted:
Published online:
Mot clés : Systèmes dynamiques, Traffic pieton, Lois fondamentales, Passerelles piétonnes
Fiammetta Venuti 1; Luca Bruno 1
@article{CRMECA_2007__335_4_194_0, author = {Fiammetta Venuti and Luca Bruno}, title = {An interpretative model of the pedestrian fundamental relation}, journal = {Comptes Rendus. M\'ecanique}, pages = {194--200}, publisher = {Elsevier}, volume = {335}, number = {4}, year = {2007}, doi = {10.1016/j.crme.2007.03.008}, language = {en}, }
Fiammetta Venuti; Luca Bruno. An interpretative model of the pedestrian fundamental relation. Comptes Rendus. Mécanique, Volume 335 (2007) no. 4, pp. 194-200. doi : 10.1016/j.crme.2007.03.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.03.008/
[1] U. Weidmann, Transporttechnik der Fussgänger, ETH Zürich, March 1993, Ivt Report no. 90
[2] W. Daamen, Modelling passenger flows in public transport facilities, PhD thesis, Delft University of technology, Department transport and planning, 2004
[3] On the relationship between crowd density and movement velocity, Fire Safety J., Volume 38 (2003), pp. 271-283
[4] Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Math. Comput. Model., Volume 45 (2007), pp. 252-269
[5] S. Buchmueller, U. Weidmann, Parameters of pedestrians, pedestrian traffic and walking facilities, ETH Zürich, October 2006, Ivt Report no. 132
[6] The London Millennium Footbridge, Structural Engineer, Volume 79 (2001) no. 22, pp. 17-33
[7] Pedestrian Planning and Design, Elevator World Inc., 1987
[8] ISO International Standardization Organization, Geneva, Switzerland, Bases for Design of Structures Serviceability of Buildings Against Vibrations, 1992, ISO 10137
[9] Field measurement of lateral vibration on a pedestrian suspension bridge, Structural Engineer, Volume 81 (2003) no. 22, pp. 22-26
[10] Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge, Earthquake Eng. Struct. Dynam., Volume 22 (1993), pp. 741-758
[11] Multiple walking speed–frequency relations are predicted by constrained optimization, J. Theor. Biol., Volume 209 (2001), pp. 445-453
[12] The fundamental diagram of pedestrian movement revisited, J. Stat. Mech., Volume 10 (2005)
[13] Verrkhersbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgangerverkhers, Strassenbau and Strassenverkherstechnik, Volume 22 (1963)
[14] First order models and closure of mass conservation equations in the mathematical theory of vehicular traffic flow, C. R. Mecanique (2005), pp. 843-851
Cited by Sources:
Comments - Policy