Molybdenum particles were melted and accelerated by a plasma jet to impact on glass surfaces held at room temperature. A fast charge-coupled device (CCD) camera was triggered to capture images of the particles during spreading. Splats on the glass held at ambient temperature fragmented, leaving only a solidified central core. A 3D model of droplet impact and solidification was used to simulate the impact and spreading of these plasma-sprayed particles. The thermal contact resistance, which was estimated from an existing heat conduction model, was used as an input parameter in the 3D model. It was found that the thermal contact resistance between the splat central core and the glass was two orders of magnitude lower than that between the rest of the splat fluid and the surface. This suggests that the physical contact between the fluid in the splat central core and the glass surface can be improved by the large pressure generated during impact.
Des particules de molybdène sont fondues et accélérées par un jet de plasma et sont projetées à haute vitesse sur des surfaces de verre à température ambiante. Une caméra rapide à dispositif à transfert de charge (CCD) est déclenchée pour photographier les particules lors de leur écrasement. Sur le verre maintenu à température ambiante, les gouttelettes écrasées se fragmentent en périphérie laissant la partie centrale intacte. Un modèle numérique 3D est utilisé pour simuler l'impact et l'étalement des particules projetées par plasma. La résistance thermique de contact qui est estimée à partir d'un modèle de conduction de chaleur, est un paramètre d'entrée du modèle numérique 3D. Nous avons trouvé que la résistance thermique de contact entre la région centrale de la gouttelette et le verre était deux ordres de grandeur plus basse que celle entre la périphérie et le verre. Ceci suggère que le contact physique entre le fluide de la partie centrale de la gouttelette et la surface de verre est amélioré par la pression élevée lors de l'impact.
Mot clés : Mécanique des fluides, Vitesse de refroidissement, Impact de particules, Fragmentation de gouttelettes, Résistance thermique de contact
André McDonald 1; Michelle Xue 1; Sanjeev Chandra 1; Javad Mostaghimi 1; Christian Moreau 2
@article{CRMECA_2007__335_5-6_351_0, author = {Andr\'e McDonald and Michelle Xue and Sanjeev Chandra and Javad Mostaghimi and Christian Moreau}, title = {Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature}, journal = {Comptes Rendus. M\'ecanique}, pages = {351--356}, publisher = {Elsevier}, volume = {335}, number = {5-6}, year = {2007}, doi = {10.1016/j.crme.2007.05.006}, language = {en}, }
TY - JOUR AU - André McDonald AU - Michelle Xue AU - Sanjeev Chandra AU - Javad Mostaghimi AU - Christian Moreau TI - Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature JO - Comptes Rendus. Mécanique PY - 2007 SP - 351 EP - 356 VL - 335 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2007.05.006 LA - en ID - CRMECA_2007__335_5-6_351_0 ER -
%0 Journal Article %A André McDonald %A Michelle Xue %A Sanjeev Chandra %A Javad Mostaghimi %A Christian Moreau %T Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature %J Comptes Rendus. Mécanique %D 2007 %P 351-356 %V 335 %N 5-6 %I Elsevier %R 10.1016/j.crme.2007.05.006 %G en %F CRMECA_2007__335_5-6_351_0
André McDonald; Michelle Xue; Sanjeev Chandra; Javad Mostaghimi; Christian Moreau. Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 351-356. doi : 10.1016/j.crme.2007.05.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.006/
[1] Formation of fingers around the edges of a drop hitting a metal plate with high velocity, J. Fluid Mech., Volume 510 (2004), pp. 353-373
[2] The effect of substrate preheating and surface organic covering on splat formation, May 25–29, 1998 (Nice, France) (C. Coddet, ed.), ASM International (1998), pp. 473-480
[3] Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray, Thin Solid Films, Volume 385 (2001), pp. 132-141
[4] Splat formation and cooling of plasma-sprayed zirconia, Thin Solid Films, Volume 305 (1997), pp. 35-47
[5] Impacting particle temperature monitoring during plasma spray deposition, Meas. Sci. Technol., Volume 1 (1990), pp. 807-814
[6] Thermal contact resistance between plasma-sprayed particles and flat surfaces, Int. J. Heat Mass Transfer, Volume 50 (2007), pp. 1737-1749
[7] Studies of splat morphology and rapid solidification during thermal spraying, Int. J. Heat Mass Transfer, Volume 44 (2001), pp. 4579-4592
[8] Substrate melting during thermal spray splat quenching, Thin Solid Films, Volume 468 (2004), pp. 113-119
[9] Impact of plasma-sprayed metal particles on hot and cold glass surfaces, Thin Solid Films, Volume 514 (2006), pp. 212-222
[10] A three-dimensional model of droplet impact and solidification, Int. J. Heat Mass Transfer, Volume 45 (2002), pp. 2229-2242
[11] Dynamics of splat formation in plasma spray coating process, Plasma Chem. Plasma Process., Volume 22 (2002), pp. 59-84
[12] A photographic investigation into the disintegration of liquid sheets, Trans. Royal Soc. London A, Volume 247 (1954), pp. 101-130
Cited by Sources:
Comments - Policy