Comptes Rendus
Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature
[Modélisation de la fragmentation de particules projetées par plasma sur des surfaces solides à température ambiante]
Comptes Rendus. Mécanique, Melting and solidification: processes and models, Volume 335 (2007) no. 5-6, pp. 351-356.

Des particules de molybdène sont fondues et accélérées par un jet de plasma et sont projetées à haute vitesse sur des surfaces de verre à température ambiante. Une caméra rapide à dispositif à transfert de charge (CCD) est déclenchée pour photographier les particules lors de leur écrasement. Sur le verre maintenu à température ambiante, les gouttelettes écrasées se fragmentent en périphérie laissant la partie centrale intacte. Un modèle numérique 3D est utilisé pour simuler l'impact et l'étalement des particules projetées par plasma. La résistance thermique de contact qui est estimée à partir d'un modèle de conduction de chaleur, est un paramètre d'entrée du modèle numérique 3D. Nous avons trouvé que la résistance thermique de contact entre la région centrale de la gouttelette et le verre était deux ordres de grandeur plus basse que celle entre la périphérie et le verre. Ceci suggère que le contact physique entre le fluide de la partie centrale de la gouttelette et la surface de verre est amélioré par la pression élevée lors de l'impact.

Molybdenum particles were melted and accelerated by a plasma jet to impact on glass surfaces held at room temperature. A fast charge-coupled device (CCD) camera was triggered to capture images of the particles during spreading. Splats on the glass held at ambient temperature fragmented, leaving only a solidified central core. A 3D model of droplet impact and solidification was used to simulate the impact and spreading of these plasma-sprayed particles. The thermal contact resistance, which was estimated from an existing heat conduction model, was used as an input parameter in the 3D model. It was found that the thermal contact resistance between the splat central core and the glass was two orders of magnitude lower than that between the rest of the splat fluid and the surface. This suggests that the physical contact between the fluid in the splat central core and the glass surface can be improved by the large pressure generated during impact.

Publié le :
DOI : 10.1016/j.crme.2007.05.006
Keywords: Fluid mechanics, Cooling rate, Particle impact, Splat fragmentation, Thermal contact resistance
Mots-clés : Mécanique des fluides, Vitesse de refroidissement, Impact de particules, Fragmentation de gouttelettes, Résistance thermique de contact

André McDonald 1 ; Michelle Xue 1 ; Sanjeev Chandra 1 ; Javad Mostaghimi 1 ; Christian Moreau 2

1 Center for Advanced Coating Technology, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 1A4 Canada
2 National Research Council Canada, Industrial Materials Institute, Boucherville, Québec, J4B 6Y4 Canada
@article{CRMECA_2007__335_5-6_351_0,
     author = {Andr\'e McDonald and Michelle Xue and Sanjeev Chandra and Javad Mostaghimi and Christian Moreau},
     title = {Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {351--356},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.006},
     language = {en},
}
TY  - JOUR
AU  - André McDonald
AU  - Michelle Xue
AU  - Sanjeev Chandra
AU  - Javad Mostaghimi
AU  - Christian Moreau
TI  - Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 351
EP  - 356
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.006
LA  - en
ID  - CRMECA_2007__335_5-6_351_0
ER  - 
%0 Journal Article
%A André McDonald
%A Michelle Xue
%A Sanjeev Chandra
%A Javad Mostaghimi
%A Christian Moreau
%T Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature
%J Comptes Rendus. Mécanique
%D 2007
%P 351-356
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.006
%G en
%F CRMECA_2007__335_5-6_351_0
André McDonald; Michelle Xue; Sanjeev Chandra; Javad Mostaghimi; Christian Moreau. Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature. Comptes Rendus. Mécanique, Melting and solidification: processes and models, Volume 335 (2007) no. 5-6, pp. 351-356. doi : 10.1016/j.crme.2007.05.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.006/

[1] N. Mehdizadeh; S. Chandra; J. Mostaghimi Formation of fingers around the edges of a drop hitting a metal plate with high velocity, J. Fluid Mech., Volume 510 (2004), pp. 353-373

[2] C. Li; J. Li; W. Wong The effect of substrate preheating and surface organic covering on splat formation, May 25–29, 1998 (Nice, France) (C. Coddet, ed.), ASM International (1998), pp. 473-480

[3] X. Jiang; Y. Wan; H. Hermann; S. Sampath Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray, Thin Solid Films, Volume 385 (2001), pp. 132-141

[4] L. Bianchi; A. Leger; M. Vardelle; A. Vardelle; P. Fauchais Splat formation and cooling of plasma-sprayed zirconia, Thin Solid Films, Volume 305 (1997), pp. 35-47

[5] C. Moreau; P. Cielo; M. Lamontagne; S. Dallaire; M. Vardelle Impacting particle temperature monitoring during plasma spray deposition, Meas. Sci. Technol., Volume 1 (1990), pp. 807-814

[6] A. McDonald; C. Moreau; S. Chandra Thermal contact resistance between plasma-sprayed particles and flat surfaces, Int. J. Heat Mass Transfer, Volume 50 (2007), pp. 1737-1749

[7] H. Zhang; X. Wang; L. Zheng; X. Jiang Studies of splat morphology and rapid solidification during thermal spraying, Int. J. Heat Mass Transfer, Volume 44 (2001), pp. 4579-4592

[8] L. Li; X. Wang; G. Wei; A. Vaidya; H. Zhang; S. Sampath Substrate melting during thermal spray splat quenching, Thin Solid Films, Volume 468 (2004), pp. 113-119

[9] A. McDonald; M. Lamontagne; C. Moreau; S. Chandra Impact of plasma-sprayed metal particles on hot and cold glass surfaces, Thin Solid Films, Volume 514 (2006), pp. 212-222

[10] M. Pasandideh-Fard; S. Chandra; J. Mostaghimi A three-dimensional model of droplet impact and solidification, Int. J. Heat Mass Transfer, Volume 45 (2002), pp. 2229-2242

[11] J. Mostaghimi; M. Pasandideh-Fard; S. Chandra Dynamics of splat formation in plasma spray coating process, Plasma Chem. Plasma Process., Volume 22 (2002), pp. 59-84

[12] N. Dombrowski; R. Fraser A photographic investigation into the disintegration of liquid sheets, Trans. Royal Soc. London A, Volume 247 (1954), pp. 101-130

  • Diego de Araujo Santana; Claudio Shyinti Kiminami; Francisco Gil Coury; Piter Gargarella; Regis Daniel Cava; Michael Joseph Kaufman Production of gas-atomized powders of [(Fe0.6Co0.4)0.75B0.2Si0.05]96Nb4 glass-forming alloy and their consolidation by hot extrusion, Journal of Alloys and Compounds, Volume 931 (2023), p. 167605 | DOI:10.1016/j.jallcom.2022.167605
  • K. Bobzin; H. Heinemann; K. Jasutyn; S. R. Jeske; J. Bender; S. Warkentin; O. Mokrov; R. Sharma; U. Reisgen Modeling the Droplet Impact on the Substrate with Surface Preparation in Thermal Spraying with SPH, Journal of Thermal Spray Technology, Volume 32 (2023) no. 2-3, p. 599 | DOI:10.1007/s11666-023-01534-0
  • Mohammad Mahdi Nasiri; Ali Dolatabadi; Christian Moreau Modeling of liquid detachment and fragmentation during the impact of plasma spray particles on a cold substrate, International Journal of Heat and Mass Transfer, Volume 189 (2022), p. 122718 | DOI:10.1016/j.ijheatmasstransfer.2022.122718
  • Mohammad Mahdi Nasiri; Ali Dolatabadi; Christian Moreau Modeling of Liquid Detachment and Fragmentation During the Impact of Plasma Spray Particles on a Cold Substrate, SSRN Electronic Journal (2021) | DOI:10.2139/ssrn.3986691
  • Yongang Zhang; Steve Matthews; Paul Munroe; Margaret Hyland Plasma-sprayed nickel splats on chromium substrates: The role of substrate preheating and thermal conductivity, Applied Surface Science, Volume 494 (2019), p. 124 | DOI:10.1016/j.apsusc.2019.06.266
  • Yongang Zhang; Steven Matthews; Margaret Hyland Role of solidification in the formation of plasma sprayed nickel splats through simulation and experimental observation, International Journal of Heat and Mass Transfer, Volume 115 (2017), p. 488 | DOI:10.1016/j.ijheatmasstransfer.2017.07.072
  • Yongang Zhang; Steven Matthews; Margaret Hyland Modelling the spreading behaviour of plasma-sprayed nickel droplets under different impact conditions, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 27, p. 275601 | DOI:10.1088/1361-6463/aa760e
  • Stéphane Vincent; Cédric Le Bot; Frédéric Sarret; Erick Meillot; Jean-Paul Caltagirone; Luc Bianchi Penalty and Eulerian–Lagrangian VOF methods for impact and solidification of metal droplets plasma spray process, Computers Fluids, Volume 113 (2015), p. 32 | DOI:10.1016/j.compfluid.2014.10.004
  • Pierre L. Fauchais; Joachim V. R. Heberlein; Maher I. Boulos Process Diagnostics and Online Monitoring and Control, Thermal Spray Fundamentals (2014), p. 1251 | DOI:10.1007/978-0-387-68991-3_16
  • Pierre L. Fauchais; Joachim V. R. Heberlein; Maher I. Boulos Conventional Coating Formation, Thermal Spray Fundamentals (2014), p. 807 | DOI:10.1007/978-0-387-68991-3_13
  • Kun Yang; Min Liu; Kesong Zhou; Changguang Deng Recent Developments in the Research of Splat Formation Process in Thermal Spraying, Journal of Materials, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/260758
  • Simon Goutier; Michel Vardelle; Pierre Fauchais Comparison between metallic and ceramic splats: Influence of viscosity and kinetic energy on the particle flattening, Surface and Coatings Technology, Volume 235 (2013), p. 657 | DOI:10.1016/j.surfcoat.2013.08.044
  • A. T. T. Tran; M. M. Hyland The Role of Substrate Surface Chemistry on Splat Formation During Plasma Spray Deposition by Experiments and Simulations, Journal of Thermal Spray Technology, Volume 19 (2010) no. 1-2, p. 11 | DOI:10.1007/s11666-009-9414-2
  • S. Brossard; P.R. Munroe; A.T.T. Tran; M.M. Hyland Study of the splat formation for plasma sprayed NiCr on aluminum substrate as a function of substrate condition, Surface and Coatings Technology, Volume 204 (2010) no. 16-17, p. 2647 | DOI:10.1016/j.surfcoat.2010.02.013
  • Sanjeev Chandra; Pierre Fauchais Formation of Solid Splats During Thermal Spray Deposition, Journal of Thermal Spray Technology, Volume 18 (2009) no. 2, p. 148 | DOI:10.1007/s11666-009-9294-5
  • A. T. T. Tran; S. Brossard; M. M. Hyland; B. J. James; P. Munroe Evidence of Substrate Melting of NiCr Particles on Stainless Steel Substrate by Experimental Observation and Simulations, Plasma Chemistry and Plasma Processing, Volume 29 (2009) no. 6, p. 475 | DOI:10.1007/s11090-009-9192-0

Cité par 16 documents. Sources : Crossref

Commentaires - Politique