The melting interface geometries present within cylindrical iron rods in microgravity are examined. Melting samples are quenched in microgravity by immersion in a water bath. Samples are sectioned on multiple planes and photo microscopy analysis is used to determine the shape of the melting interface on each plane. Images from multiple cross-sections are assembled to produce a three-dimensional representation of the melting interface present in microgravity. Iron rods are shown to have an asymmetric, convex melting interface in microgravity, with a significantly different (increased) heat transfer area compared to the planar normal-gravity case. The change in surface area of the melting interface between normal gravity and microgravity is shown to provide excellent agreement with the observed change in melting rate, as predicted by simple one-dimensional heat transfer analysis.
Les formes d'interface de fusion présentes dans les barreaux cylindriques d'acier en microgravité sont examinées. Des échantillons fondus sont refroidis en microgravité par immersion dans un bain d'eau. Les échantillons sont sectionnés en de multiples plans et l'analyse de photo de microscopie est employée pour déterminer la forme du front de fusion dans chaque plan. Des images des sections transversales multiples sont assemblées pour produire une représentation tridimensionnelle de l'interface de fusion en microgravité. Il est trouvé que des tiges de fer conduisent à une interface de fusion asymétrique et convexe en microgravité, avec une surface de transfert thermique accrue par comparaison au cas plan en pesanteur normale. Le changement de la superficie de l'interface de fusion entre la pesanteur normale et la microgravité est en excellent accord avec le changement prédit par une analyse unidimensionnelle simple du transfert thermique.
Mot clés : Mécanique des fluides, Interface de fusion, Taux de fusion, Métaux combustibles, Microgravité, Topologie de la surface de fusion
Nicolas R. Ward 1; Ted A. Steinberg 1
@article{CRMECA_2007__335_5-6_342_0, author = {Nicolas R. Ward and Ted A. Steinberg}, title = {Geometry of the melting interface in cylindrical metal rods under microgravity conditions}, journal = {Comptes Rendus. M\'ecanique}, pages = {342--350}, publisher = {Elsevier}, volume = {335}, number = {5-6}, year = {2007}, doi = {10.1016/j.crme.2007.05.008}, language = {en}, }
TY - JOUR AU - Nicolas R. Ward AU - Ted A. Steinberg TI - Geometry of the melting interface in cylindrical metal rods under microgravity conditions JO - Comptes Rendus. Mécanique PY - 2007 SP - 342 EP - 350 VL - 335 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2007.05.008 LA - en ID - CRMECA_2007__335_5-6_342_0 ER -
Nicolas R. Ward; Ted A. Steinberg. Geometry of the melting interface in cylindrical metal rods under microgravity conditions. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 342-350. doi : 10.1016/j.crme.2007.05.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.008/
[1] T.A. Steinberg, The combustion of metals in gaseous oxygen, PhD Thesis, Mechanical and Electrical Engineering, New Mexico State University, Las Cruces, NM, 1990
[2] Microgravity and normal gravity combustion of metal and alloys in high pressure oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 6, American Society for Testing and Materials, 1993, pp. 133-145
[3] Combustion testing of metallic materials aboard NASA Johnson Space Center's KC-135, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 8, American Society for Testing and Materials, 1997, pp. 170-188
[4] Iron combustion in microgravity, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 5, American Society for Testing and Materials, 1991, pp. 298-312
[5] The burning of metals and alloys in microgravity, Combust. Flame, Volume 88 (1992), pp. 309-320
[6] N.R. Ward, T.A. Steinberg, Thermal analysis of iron rods burning in normal gravity and reduced gravity, in: Int. Heat Transfer Conf., Sydney, 2006
[7] An investigation of regression rate of the melting interface for iron burning in normal gravity and reduced gravity, J. ASTM Int., Volume 3 (2006) no. 4
[8] Flammability, odor, offgassing, and compatibility requirements and test procedures for materials in environments that support combustion, NASA Technical Standard, National Aeronautics and Space Administration, 1998
[9] Standard guide for evaluating metals for oxygen service, Annual Book of ASTM Standards, American Society for Testing and Materials, 1992, pp. 101-125
[10] Determination of upward flammability of materials in pressurized gaseous oxygen or oxygen-enriched environments, Space Systems—Safety and Compatibility of Materials, International Organization for Standardization (ISO), Switzerland, 2003
[11] Promoted combustion of nine structural metals in high-pressure gaseous oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 4, American Society for Testing and Materials, 1989, pp. 54-75
[12] Modelling the NASA/ASTM flammability test for metallic materials burning in reduced gravity, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 9, American Society for Testing and Materials, 2000, pp. 266-291
[13] Combustion of 316 stainless steel in high-pressure oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 4, American Society for Testing and Materials, 1989, pp. 195-211
[14] J.R. DeWit, Investigating the combustion mechanisms of bulk metals through microanalysis of post-Test 3.2 mm diameter metallic rods burned in oxygen-enriched atmospheres, PhD Thesis, Department of Mechanical Engineering, The University of Queensland, St. Lucia, Australia, 2003
[15] Microanalysis of quenched and self-extinguished aluminum rods burned in oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 10, American Society for Testing and Materials, 2003, pp. 151-163
[16] B.P. Osborne, T.A. Steinberg, Experimental investigation into liquid jetting modes and break-up mechanisms conducted in a new reduced gravity facility, Microgravity Science and Technology (April 2006), in press
[17] Phenomena in Microgravity Laboratory Homepage, 2006 www.bee.qut.edu.au/research/projects/microgravity (Available online at:)
[18] The flammability of carbon steel as determined by pressurized oxygen index measurements, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 2, American Society for Testing and Materials, 1986, pp. 153-170
Cited by Sources:
Comments - Policy