Comptes Rendus
Geometry of the melting interface in cylindrical metal rods under microgravity conditions
Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 342-350.

The melting interface geometries present within cylindrical iron rods in microgravity are examined. Melting samples are quenched in microgravity by immersion in a water bath. Samples are sectioned on multiple planes and photo microscopy analysis is used to determine the shape of the melting interface on each plane. Images from multiple cross-sections are assembled to produce a three-dimensional representation of the melting interface present in microgravity. Iron rods are shown to have an asymmetric, convex melting interface in microgravity, with a significantly different (increased) heat transfer area compared to the planar normal-gravity case. The change in surface area of the melting interface between normal gravity and microgravity is shown to provide excellent agreement with the observed change in melting rate, as predicted by simple one-dimensional heat transfer analysis.

Les formes d'interface de fusion présentes dans les barreaux cylindriques d'acier en microgravité sont examinées. Des échantillons fondus sont refroidis en microgravité par immersion dans un bain d'eau. Les échantillons sont sectionnés en de multiples plans et l'analyse de photo de microscopie est employée pour déterminer la forme du front de fusion dans chaque plan. Des images des sections transversales multiples sont assemblées pour produire une représentation tridimensionnelle de l'interface de fusion en microgravité. Il est trouvé que des tiges de fer conduisent à une interface de fusion asymétrique et convexe en microgravité, avec une surface de transfert thermique accrue par comparaison au cas plan en pesanteur normale. Le changement de la superficie de l'interface de fusion entre la pesanteur normale et la microgravité est en excellent accord avec le changement prédit par une analyse unidimensionnelle simple du transfert thermique.

Published online:
DOI: 10.1016/j.crme.2007.05.008
Keywords: Fluid mechanics, Melting interface, Melting rate, Burning metals, Quench, Microgravity, Melting surface geometry
Mot clés : Mécanique des fluides, Interface de fusion, Taux de fusion, Métaux combustibles, Microgravité, Topologie de la surface de fusion

Nicolas R. Ward 1; Ted A. Steinberg 1

1 School of Engineering Systems, Faculty of Built Environment and Engineering, Queensland University of Technology, Brisbane, Australia
@article{CRMECA_2007__335_5-6_342_0,
     author = {Nicolas R. Ward and Ted A. Steinberg},
     title = {Geometry of the melting interface in cylindrical metal rods under microgravity conditions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {342--350},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.008},
     language = {en},
}
TY  - JOUR
AU  - Nicolas R. Ward
AU  - Ted A. Steinberg
TI  - Geometry of the melting interface in cylindrical metal rods under microgravity conditions
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 342
EP  - 350
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.008
LA  - en
ID  - CRMECA_2007__335_5-6_342_0
ER  - 
%0 Journal Article
%A Nicolas R. Ward
%A Ted A. Steinberg
%T Geometry of the melting interface in cylindrical metal rods under microgravity conditions
%J Comptes Rendus. Mécanique
%D 2007
%P 342-350
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.008
%G en
%F CRMECA_2007__335_5-6_342_0
Nicolas R. Ward; Ted A. Steinberg. Geometry of the melting interface in cylindrical metal rods under microgravity conditions. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 342-350. doi : 10.1016/j.crme.2007.05.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.008/

[1] T.A. Steinberg, The combustion of metals in gaseous oxygen, PhD Thesis, Mechanical and Electrical Engineering, New Mexico State University, Las Cruces, NM, 1990

[2] T.A. Steinberg; D.B. Wilson; F.J. Benz Microgravity and normal gravity combustion of metal and alloys in high pressure oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 6, American Society for Testing and Materials, 1993, pp. 133-145

[3] T.A. Steinberg; J.M. Stoltzfus Combustion testing of metallic materials aboard NASA Johnson Space Center's KC-135, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 8, American Society for Testing and Materials, 1997, pp. 170-188

[4] T.A. Steinberg; F.J. Benz Iron combustion in microgravity, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 5, American Society for Testing and Materials, 1991, pp. 298-312

[5] T.A. Steinberg; D.B. Wilson; F.J. Benz The burning of metals and alloys in microgravity, Combust. Flame, Volume 88 (1992), pp. 309-320

[6] N.R. Ward, T.A. Steinberg, Thermal analysis of iron rods burning in normal gravity and reduced gravity, in: Int. Heat Transfer Conf., Sydney, 2006

[7] N.R. Ward; T. Suvorovs; T.A. Steinberg An investigation of regression rate of the melting interface for iron burning in normal gravity and reduced gravity, J. ASTM Int., Volume 3 (2006) no. 4

[8] Flammability, odor, offgassing, and compatibility requirements and test procedures for materials in environments that support combustion, NASA Technical Standard, National Aeronautics and Space Administration, 1998

[9] Standard guide for evaluating metals for oxygen service, Annual Book of ASTM Standards, American Society for Testing and Materials, 1992, pp. 101-125

[10] Determination of upward flammability of materials in pressurized gaseous oxygen or oxygen-enriched environments, Space Systems—Safety and Compatibility of Materials, International Organization for Standardization (ISO), Switzerland, 2003

[11] T.A. Steinberg; M.A. Rucker; H.D. Beeson Promoted combustion of nine structural metals in high-pressure gaseous oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 4, American Society for Testing and Materials, 1989, pp. 54-75

[12] T.A. Steinberg; D.B. Wilson Modelling the NASA/ASTM flammability test for metallic materials burning in reduced gravity, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 9, American Society for Testing and Materials, 2000, pp. 266-291

[13] F.J. Benz; T.A. Steinberg; D. Janoff Combustion of 316 stainless steel in high-pressure oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 4, American Society for Testing and Materials, 1989, pp. 195-211

[14] J.R. DeWit, Investigating the combustion mechanisms of bulk metals through microanalysis of post-Test 3.2 mm diameter metallic rods burned in oxygen-enriched atmospheres, PhD Thesis, Department of Mechanical Engineering, The University of Queensland, St. Lucia, Australia, 2003

[15] B.P. Osborne; T. Suvorovs; J. DeWit; T.A. Steinberg Microanalysis of quenched and self-extinguished aluminum rods burned in oxygen, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 10, American Society for Testing and Materials, 2003, pp. 151-163

[16] B.P. Osborne, T.A. Steinberg, Experimental investigation into liquid jetting modes and break-up mechanisms conducted in a new reduced gravity facility, Microgravity Science and Technology (April 2006), in press

[17] N.R. Ward Phenomena in Microgravity Laboratory Homepage, 2006 www.bee.qut.edu.au/research/projects/microgravity (Available online at:)

[18] M.A. Benning; B.L. Werley The flammability of carbon steel as determined by pressurized oxygen index measurements, Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, vol. 2, American Society for Testing and Materials, 1986, pp. 153-170

Cited by Sources:

Comments - Policy