Comptes Rendus
Theoretical confirmation of the crystallization of a compound alloy using the AHP crystal growth method
[Confirmation théorique de la cristallisation d'un alliage composite utilisant la méthode AHP]
Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 315-322.

La croissance cristalline du InxGa1−xSb pour x=0,06 par la méthode AHP (flux de chaleur axial proche de l'interface) est considérée. L'indium lourd est rejeté près de l'interface pendant la croissance du cristal. L'indium réduit de manière significative la température de cristallisation, et influence la convection dans le bain fondu. Le réchauffeur-AHP agit comme une cloison. En raison de cette cloison une zone réduite de liquide bien mélangé avec une haute concentration d'In existe et assure la croissance stable du cristal avec une composition élevée après déplacement du creuset vers le bas. Le cristal obtenu est très homogène. Un modèle numérique basé sur la méthode des différences finies a été également développé.

The crystallization of InxGa1−xSb for x=0.06 by the AHP-method (Axial Heat flux, close to the Phase interface) is considered. Heavy indium is rejected during crystal growth close to the interface. Indium significantly decreases the crystallization temperature, and has an influence on the melt convection. The AHP-heater serves as a partition; due to this partition a small well-mixed liquid zone with high In concentration exists and causes a stable crystal growth with high composition after the crucible is moved down. The grown crystal is very homogeneous. Numerical modelling has also been performed, using finite difference schemes.

Publié le :
DOI : 10.1016/j.crme.2007.05.012
Keywords: Computational fluid mechanics, Thermal and solute convection, Transitions, Interface, Phase change diagram
Mot clés : Mécanique des fluides numérique, Convection thermo-solutale, Transitions, Interface, Diagramme de phase
Marina Marchenko 1

1 Center for Thermophysical Researches “Thermo” Ltd, Alexandrov, Vladimir Region, 601650, Russia
@article{CRMECA_2007__335_5-6_315_0,
     author = {Marina Marchenko},
     title = {Theoretical confirmation of the crystallization of a compound alloy using the {AHP} crystal growth method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {315--322},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.012},
     language = {en},
}
TY  - JOUR
AU  - Marina Marchenko
TI  - Theoretical confirmation of the crystallization of a compound alloy using the AHP crystal growth method
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 315
EP  - 322
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.012
LA  - en
ID  - CRMECA_2007__335_5-6_315_0
ER  - 
%0 Journal Article
%A Marina Marchenko
%T Theoretical confirmation of the crystallization of a compound alloy using the AHP crystal growth method
%J Comptes Rendus. Mécanique
%D 2007
%P 315-322
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.012
%G en
%F CRMECA_2007__335_5-6_315_0
Marina Marchenko. Theoretical confirmation of the crystallization of a compound alloy using the AHP crystal growth method. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 315-322. doi : 10.1016/j.crme.2007.05.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.012/

[1] N. Duhanian; T. Duffar; C. Marin; E. Diegez; J.P. Garandet; P. Dantan; G. Guiffant Experimental study of the solid–liquid interface dynamics and chemical segregation in semiconductor alloy Bridgman growth, Journal of Crystal Growth, Volume 275 (2005), pp. 422-432

[2] I. Ansara; M. Gambino; J.P. Bros Journal of Crystal Growth, 32 (1976), p. 101

[3] C. Stellian; T. Duffar Numerical analysis of solute distribution and interface stabilization during experimental Bridgman growth of concentrated GaInSb alloys, Journal of Crystal Growth, Volume 275 (2005), p. e585-e594

[4] M. Marchenko, T. Duffar, Numerical study of boundary condition influence on convective flow and heat/mass transfer during concentrated alloy Bridgman crystal growth, in: 13th International Heat Transfer Conference, Sydney, Australia, 2006, submitted for publication

[5] A. Ostrogorsky, US Patent Application S.N. 397741, 1989

[6] V. Golyshev, M. Gonik, Patent of RF # 180085415, 1990

[7] S. Bykova; V. Golyshev; M. Gonik; V. Tsvetovsky; M. Marchenko; I. Frjazinov; T. Duffar Investigation of conditions for homogeneous Ga1−xInxSb crystals growth under conditions of weak melt flows, J. Crystallography, Volume 49 (2004) no. 2, pp. 369-375 (in Russian)

[8] S. Bykova, V. Golyshev, M. Gonik, V. Tsvetovsky, M. Marchenko, I. Frjazinov, T. Duffar, Investigation of conditions for homogeneous Ga1−xInxSb crystals growth under conditions of weak melt flows, in: Proceeding of the 5th Int. Conference on Single Crystal Growth and Heat & Mass Transfer, vol. 1, Obninsk, Russia, 22–26 September, 2003, pp. 101–108

[9] V. Golyshev, M. Marchenko, I. Frjasinov, Effect of boundary temperature conditions on the shape of the phase interface, on melt flow and impurity distribution during the growth of single crystals by the AHP-method, in: Proc. 4th Int. Conf. on Single Crystal Growth and Heat & Mass Transfer, vol. 3, Obninsk, Russia, 24–28 September, 2001, pp. 715–724

[10] M. Marchenko Numerical study of low frequency oscillation appearance during InxGa1−xSb crystal growth by Bridgman and AHP methods (A.J. Nowak; R.A. Bialecki; G. Wecel, eds.), Eurotherm Seminar 82, Numerical Heat Transfer, vol. 3, 2005, pp. 703-712 (ISBN: 83-922381-2-5)

[11] A. Chernov; E. Givargizov et al., Modern Crystallography, vol. 3, Nauka, Moscow, 1980 (in Russian)

[12] M. Marchenko; I. Frjazinov Computer code CARMA1 for solving nonstationary problem of crystal growth in ampoule, Journal of Computational Mathematics and Mathematical Physics, Volume 37 (1997) no. 8, pp. 988-998

[13] I. Frjazinov; M. Marchenko; O. Mazhorova Monotone corrective terms and coupled algorithm for Navier–Stokes equations of an incompressible flow, Journal of Mathematical Modelling, Volume 6 (1994) no. N12, pp. 97-116 (in Russian)

[14] M. Marchenko, Use of uniform algorithm for heat and mass transfer during directional crystallization both from dopant and from binary melt, in: Proceedings of 4th ICCHMT May 17–20, 2005, Paris-Cachan, France, ICCHMT'05, paper-426

[15] M. Marchenko, I. Friazinov, Mathematical model and numerical realization of faceted crystal growth process, Crystallography Reports 50, N6, pp. 1114–1122

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Controlling the growth interface shape in the growth of CdTe single crystals by the traveling heater method

Sadik Dost; YongCai Liu

C. R. Méca (2007)


Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys

Kader Zaïdat; Nathalie Mangelinck-Noël; René Moreau

C. R. Méca (2007)


Modeling of solidification: Grain structures and segregations in metallic alloys

Charles-André Gandin

C. R. Phys (2010)