Comptes Rendus
Thermal vibrational convection in a two-phase stratified liquid
Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 304-314.

The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of the applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of the vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different from that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

La réponse d'un système liquide à deux phases stratifié sujet à une vibration parallèle avec un gradient de température imposé est analysée en utilisant une méthode hybride thermique lattice Boltzmann (HTLB). Les vibrations considérées correspondent aux translations sinusoïdales d'une cavité rigide à fréquence fixe. Les couches sont couplées thermiquement et mécaniquement. L'interaction entre la convection thermique causée par la gravité et les vibrations est étudiée. La capacité des vibrations à intensifier l'écoulement, le transfert de chaleur et la déformation de l'interface est étudiée. Pour la gamme des paramètres considérés, les résultats indiquent que l'effet du nombre vibratoire de Rayleigh et de la fréquence vibratoire sur un système liquide à deux phases et stratifié est très différent que son effet sur un système liquide à une phase. La comparaison de ces deux systèmes et discutée.

Published online:
DOI: 10.1016/j.crme.2007.05.014
Keywords: Computational fluid mechanics, Thermal vibrational convection, Lattice Boltzmann, Interface
Mot clés : Mécanique des fluides numérique, Convection thermique-vibratoire, Lattice Boltzmann, Interface

Qingming Chang 1; J. Iwan D. Alexander 1

1 National Center for Space Exploration Research and Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
@article{CRMECA_2007__335_5-6_304_0,
     author = {Qingming Chang and J. Iwan D. Alexander},
     title = {Thermal vibrational convection in a two-phase stratified liquid},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {304--314},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.014},
     language = {en},
}
TY  - JOUR
AU  - Qingming Chang
AU  - J. Iwan D. Alexander
TI  - Thermal vibrational convection in a two-phase stratified liquid
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 304
EP  - 314
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.014
LA  - en
ID  - CRMECA_2007__335_5-6_304_0
ER  - 
%0 Journal Article
%A Qingming Chang
%A J. Iwan D. Alexander
%T Thermal vibrational convection in a two-phase stratified liquid
%J Comptes Rendus. Mécanique
%D 2007
%P 304-314
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.014
%G en
%F CRMECA_2007__335_5-6_304_0
Qingming Chang; J. Iwan D. Alexander. Thermal vibrational convection in a two-phase stratified liquid. Comptes Rendus. Mécanique, Volume 335 (2007) no. 5-6, pp. 304-314. doi : 10.1016/j.crme.2007.05.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.014/

[1] G.Z. Gershuni; D.V. Lyubimov Thermovibrational Convection, Wiley, 1998

[2] I.B. Simonenko Foundation of average method for the problem of convection in the field of rapidly oscillating forces and for other parabolic equations, Math. Sb., Volume 87 (1972) no. 129, p. 236

[3] H. Khallouf; G.Z. Gershuni; A. Mojtabi Numerical study of two-dimensional thermovibrational convection in rectangular cavities, Numer. Heat Transfer A, Volume 27 (1995), p. 297

[4] Y. Zhao, Numerical analysis of thermal and thermosolutal vibrational convection and its effect on heat and mass transport, Ph.D. dissertation, Case Western Reserve University, 2002

[5] M.V. Khenner; D.V. Lyubimov; T.S. Belozerova; B. Roux Stability of plane-parallel vibrational flow in a two-layer system, Eur. J. Mech. B/Fluids, Volume 18 (1999), p. 1085

[6] W.M.B. Duval; D.A. Jacqmin Interfacial dynamics of two liquids under an oscillating gravitational field, AIAA J., Volume 28 (1990), p. 1933

[7] A.A. Ivanova; V.G. Kozlov; P. Evesque Interface dynamics of immiscible fluids under horizontal vibration, Fluid Dynam., Volume 36 (2001) no. 3, p. 362

[8] Q. Chang; J.I.D. Alexander Application of the lattice Boltzmann method to two-phase Rayleigh–Benard convection with a deformable interface, J. Comput. Phys., Volume 212 (2005), pp. 473-489

[9] Q. Chang, Lattice Boltzmann Method (LBM) for thermal multiphase fluid dynamics, Ph.D. dissertation, Case Western Reserve University, 2005

[10] Q. Chang, J.I.D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluidics Nanofluidics (2006) pp. 1–18, | DOI

[11] X. He; G. Doolen Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys., Volume 107 (2002) no. 1/2, p. 309

[12] X. He; S. Chen; G. Doolen A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., Volume 146 (1998), p. 282

Cited by Sources:

Comments - Policy