Comptes Rendus
Lattice Boltzmann method for melting/solidification problems
[Une méthode de type gaz sur réseau pour la transition solide/liquide]
Comptes Rendus. Mécanique, Melting and solidification: processes and models, Volume 335 (2007) no. 5-6, pp. 295-303.

Il s'agit de montrer dans le présent travail la possibilité de traiter des problèmes de transition de phase solide/liquide par une approche de type gaz sur réseau. Les résultats illustrent un bon accord avec les résultats existants dans le cas d'écoulement de convection naturelle en cavité ainsi que dans le cadre d'un problème test de solidification dirigée.

The present work uses the Lattice Boltzmann method for solving solid/liquid phase change problems. The computed results demonstrate a good agreement with the existing benchmark solution for natural convection and with the experimental solution for solid/liquid interface interacting with the flow field.

Publié le :
DOI : 10.1016/j.crme.2007.05.015
Keywords: Computational fluid mechanics, Solid/liquid phase change, Lattice Boltzmann, Enthalpy method
Mots-clés : Mécanique des fluides numérique, Changement de phase solide/liquide, Gaz sur réseau, Méthode enthalpique

El Alami Semma 1 ; Mohammed El Ganaoui 2 ; Rachid Bennacer 3

1 Université Hassan I, laboratoire de mécanique, FST de Settat, B.P. 577, Settat, Morocco
2 Université de Limoges/CNRS, SPCTS, UMR CNRS 6638, 123, Albert-Thomas, 87000 Limoges, France
3 Université de Cergy-Pontoise, laboratoire LEEVAM, 5, mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex, France
@article{CRMECA_2007__335_5-6_295_0,
     author = {El Alami Semma and Mohammed El Ganaoui and Rachid Bennacer},
     title = {Lattice {Boltzmann} method for melting/solidification problems},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {295--303},
     publisher = {Elsevier},
     volume = {335},
     number = {5-6},
     year = {2007},
     doi = {10.1016/j.crme.2007.05.015},
     language = {en},
}
TY  - JOUR
AU  - El Alami Semma
AU  - Mohammed El Ganaoui
AU  - Rachid Bennacer
TI  - Lattice Boltzmann method for melting/solidification problems
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 295
EP  - 303
VL  - 335
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crme.2007.05.015
LA  - en
ID  - CRMECA_2007__335_5-6_295_0
ER  - 
%0 Journal Article
%A El Alami Semma
%A Mohammed El Ganaoui
%A Rachid Bennacer
%T Lattice Boltzmann method for melting/solidification problems
%J Comptes Rendus. Mécanique
%D 2007
%P 295-303
%V 335
%N 5-6
%I Elsevier
%R 10.1016/j.crme.2007.05.015
%G en
%F CRMECA_2007__335_5-6_295_0
El Alami Semma; Mohammed El Ganaoui; Rachid Bennacer. Lattice Boltzmann method for melting/solidification problems. Comptes Rendus. Mécanique, Melting and solidification: processes and models, Volume 335 (2007) no. 5-6, pp. 295-303. doi : 10.1016/j.crme.2007.05.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.015/

[1] M. Jami; A. Mezrhab; M. Bouzidi; P. Lallemand Lattice-Boltzmann computation of natural convection in a partitioned enclosure with inclined partitions attached to its hot wall, Physica A: Statist. Mech. Appl., Volume 368 (2006) no. 2, pp. 481-494

[2] A. Mezrhab; M. Jami; C. Abid; M. Bouzidi; P. Lallemand Lattice-Boltzmann modelling of natural convection in an inclined square enclosure with partitions attached to its cold wall, Int. J. Heat Fluid Flow, Volume 27 (2006) no. 3, pp. 456-465

[3] F.J. Alexander; S. Chen; J.D. Sterling Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, Volume 47 (1993), p. R2249

[4] X. He; S. Chen; G.D. Doolen A novel thermal model for the lattice Boltzmann method incompressible limit, J. Comput. Phys., Volume 146 (1998), pp. 282-300

[5] W. Miller The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow, J. Crystal Growth, Volume 230 (2001), pp. 263-269

[6] W. Miller; S. Succi; D. Mansutti Lattice Boltzmann model for anisotropic liquid–solid phase transition, Phys. Rev. Lett., Volume 86 (2001) no. 16, pp. 3578-3581

[7] W. Miller; I. Rasin; F. Pimentel Growth kinetics and melt convection, J. Crystal Growth, Volume 266 (2004), pp. 283-288

[8] S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001

[9] C.K. Chen; T.S. Yen; Y.T. Yang Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle, Int. J. Heat Mass Transfer, Volume 49 (2006), pp. 1195-1204

[10] F.J. Higuera; J. Jimenez Boltzmann approach to lattice-gas simulations, Europhys. Lett., Volume 9 (1989) no. 7, pp. 663-668

[11] F.J. Higuera; S. Succi; R. Benzi Lattice gas dynamics with enhanced collisions, Europhys. Lett., Volume 9 (1989), pp. 345-349

[12] F.J. Benzi; S. Succi; M. Vergassola The lattice Boltzmann equation: theory and applications, Phys. Rep., Volume 222 (1992), pp. 145-197

[13] S. Hou; Q. Zou; S. Chen; G. Doolen; A.C. Cogley Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., Volume 118 (1995), pp. 329-347

[14] B.I. Pavel; A.A. Mohamad A numerical study on vortex shedding from two side by side cylinders using the lattice Boltzmann method (R. Bennacer; M. El Ganaoui; A.A. Mohamad; J. Sicard, eds.), Progress in Computational Heat and Mass Transfer, vol. I, Lavoisier-Tec & Doc., 2006, pp. 411-416

[15] G. de Vahl Davis Natural convection of air in a square cavity: a benchmark numerical solution, Int. J. Numer. Fluid Meth. Fluids, Volume 3 (1983), pp. 249-264

[16] C. Gau; R. Viskanta Melting and solidification of a metal system in a rectangular cavity, Int. J. Heat Mass Transfer, Volume 27 (1984), pp. 113-123

[17] F. Wolff; R. Viskanta Solidification of pure metal at a vertical wall in the presence of liquid superheat, Int. J. Heat Mass Transfer, Volume 31 (1988), pp. 1735-1744

[18] J.E. Simpson; R.S. Garimella An investigation of solutal thermal and flow fields in unidirectional alloy solidification, Int. J. Heat Mass Transfer, Volume 41 (1998), pp. 2485-2502

[19] M. El Ganaoui; A. Lamazouade; P. Bontoux; D. Morvan Computational solution for fluid flow under solid/liquid phase change conditions, Int. J. Comput. Fluids, Volume 31 (2002) no. 4–7, pp. 539-556

[20] E. Semma, Etude numérique des transferts de chaleur et de masse durant la croissance dirigée : effet de paramètres de contrôle, Thèse de doctorat Franco-Marocaine, Université de la Méditerranée/Université Mohamed V, 2004

[21] J. Kaenton; E. Semma; V. Timchenko; M. El Ganaoui; E. Leonardi; G. de Vahl Davis Effects of anisotropy and solid/liquid thermal conductivity ratio on flow instabilities during inverted Bridgman growth, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 3403-3413

[22] E. Semma, M. El Ganaoui, R. Bennacer, A.A. Mohamad, Melting and solidification problem, the lattice Boltzmann method, Int. J. Thermal Sci. (2007), in press

  • Mingming Tong Review of Particle-Based Computational Methods and Their Application in the Computational Modelling of Welding, Casting and Additive Manufacturing, Metals, Volume 13 (2023) no. 8, p. 1392 | DOI:10.3390/met13081392
  • Runa Samanta; Himadri Chattopadhyay; Chandan Guha A review on the application of lattice Boltzmann method for melting and solidification problems, Computational Materials Science, Volume 206 (2022), p. 111288 | DOI:10.1016/j.commatsci.2022.111288
  • K. Kant; P.H. Biwole; I. Shamseddine; G. Tlaiji; F. Pennec; F. Fardoun Recent advances in thermophysical properties enhancement of phase change materials for thermal energy storage, Solar Energy Materials and Solar Cells, Volume 231 (2021), p. 111309 | DOI:10.1016/j.solmat.2021.111309
  • M. A. M. Irwan; C. S. Nor Azwadi; Y. Asako; J. Ghaderian Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process, Journal of Thermal Analysis and Calorimetry, Volume 141 (2020) no. 2, p. 669 | DOI:10.1007/s10973-019-09038-2
  • M A M Irwan; C S Nor Azwadi; Y Asako Review on Numerical Simulations for Solidification Melting of Nano-Enhanced Phase Change Materials (NEPCM), IOP Conference Series: Earth and Environmental Science, Volume 268 (2019) no. 1, p. 012114 | DOI:10.1088/1755-1315/268/1/012114
  • Gholamreza Imani Lattice Boltzmann simulation of melting of a phase change material confined within a cylindrical annulus with a conductive inner wall using a body-fitted non-uniform mesh, International Journal of Thermal Sciences, Volume 136 (2019), p. 549 | DOI:10.1016/j.ijthermalsci.2018.10.009
  • Farah Souayfane; Pascal Henry Biwole; Farouk Fardoun Melting of a phase change material in presence of natural convection and radiation: A simplified model, Applied Thermal Engineering, Volume 130 (2018), p. 660 | DOI:10.1016/j.applthermaleng.2017.11.026
  • Bruno Blais; Florin Ilinca Development and validation of a stabilized immersed boundary CFD model for freezing and melting with natural convection, Computers Fluids, Volume 172 (2018), p. 564 | DOI:10.1016/j.compfluid.2018.03.037
  • Mahmoud Jourabian; Mousa Farhadi; AhmadAli Rabienataj Darzi Constrained ice melting around one cylinder in horizontal cavity accelerated using three heat transfer enhancement techniques, International Journal of Thermal Sciences, Volume 125 (2018), p. 231 | DOI:10.1016/j.ijthermalsci.2017.12.001
  • Ling Li; Mingyang Wu; Ling Zhou Lattice Boltzmann Simulations for Melting and Resolidification of Ultrashort Laser Interaction with Thin Gold Film, International Journal of Thermophysics, Volume 39 (2018) no. 7 | DOI:10.1007/s10765-018-2409-9
  • Yutao Huo; Zhonghao Rao The Enthalpy-Transforming-Based Lattice Boltzmann Model for Solid–Liquid Phase Change, Journal of Heat Transfer, Volume 140 (2018) no. 10 | DOI:10.1115/1.4040345
  • Xiao-Hu Yang; Jing Liu Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method, Numerical Heat Transfer, Part A: Applications, Volume 73 (2018) no. 1, p. 34 | DOI:10.1080/10407782.2017.1420307
  • A. M. Ibrahem; M. F. El-Amin; A. A. Mohammadein; Rama Subba Reddy Gorla Lattice Boltzmann technique for heat transport phenomena coupled with melting process, Heat and Mass Transfer, Volume 53 (2017) no. 1, p. 213 | DOI:10.1007/s00231-016-1811-8
  • Andreas König-Haagen; Erwin Franquet; Eric Pernot; Dieter Brüggemann A comprehensive benchmark of fixed-grid methods for the modeling of melting, International Journal of Thermal Sciences, Volume 118 (2017), p. 69 | DOI:10.1016/j.ijthermalsci.2017.04.008
  • Matthew R. Rolchigo; Michael Y. Mendoza; Peyman Samimi; David A. Brice; Brian Martin; Peter C. Collins; Richard LeSar Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions, Metallurgical and Materials Transactions A, Volume 48 (2017) no. 7, p. 3606 | DOI:10.1007/s11661-017-4120-z
  • Zhiliang Wang; Libin Xin; Zemin Xu; Linfang Shen Lattice Boltzmann simulation of heat transfer with phase change in saturated soil during freezing process, Numerical Heat Transfer, Part B: Fundamentals, Volume 72 (2017) no. 5, p. 361 | DOI:10.1080/10407790.2017.1400311
  • Nassim M. Sahraoui; Samir Houat; Nawal Saidi; Jean-Michel Nunzi; Rachid Bennacer; Mohammed El Ganaoui Simulation of mixed convection in a horizontal channel heated from below by the lattice Boltzmann method, The European Physical Journal Applied Physics, Volume 78 (2017) no. 3, p. 34806 | DOI:10.1051/epjap/2017170046
  • Farah Souayfane; Farouk Fardoun; Pascal Henry Biwole, 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC) (2016), p. 1 | DOI:10.1109/redec.2016.7577543
  • Alissar Yehya; Hassane Naji Thermal Lattice Boltzmann Simulation of Entropy Generation within a Square Enclosure for Sensible and Latent Heat Transfers, Applied Sciences, Volume 5 (2015) no. 4, p. 1904 | DOI:10.3390/app5041904
  • Yutao Huo; Zhonghao Rao Lattice Boltzmann simulation for solid–liquid phase change phenomenon of phase change material under constant heat flux, International Journal of Heat and Mass Transfer, Volume 86 (2015), p. 197 | DOI:10.1016/j.ijheatmasstransfer.2015.03.006
  • Thomas Wiederkehr; Heinrich Müller Efficient Large-Scale Coating Microstructure Formation Using Realistic CFD Models, Journal of Thermal Spray Technology, Volume 24 (2015) no. 3, p. 283 | DOI:10.1007/s11666-014-0194-y
  • Mahmoud Jourabian; Mousa Farhadi; Kurosh Sedighi RETRACTED: On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit, Computers Mathematics with Applications, Volume 67 (2014) no. 7, p. 1358 | DOI:10.1016/j.camwa.2014.02.004
  • Johann Miranda Fuentes; Kévyn Johannes; Frédéric Kuznik; Matthieu Cosnier; Joseph Virgone Melting with convection and radiation in a participating phase change material, Applied Energy, Volume 109 (2013), p. 454 | DOI:10.1016/j.apenergy.2012.11.031
  • Mahmoud Jourabian; Mousa Farhadi; Ahmad Ali Rabienataj Darzi Convection-dominated melting of phase change material in partially heated cavity: lattice Boltzmann study, Heat and Mass Transfer, Volume 49 (2013) no. 4, p. 555 | DOI:10.1007/s00231-012-1102-y
  • Ahmad Ali Rabienataj Darzi; Mousa Farhadi; Mahmoud Jourabian; Yousef Vazifeshenas Natural convection melting of NEPCM in a cavity with an obstacle using lattice Boltzmann method, International Journal of Numerical Methods for Heat Fluid Flow, Volume 24 (2013) no. 1, p. 221 | DOI:10.1108/hff-06-2011-0138
  • Mahmoud Jourabian; Mousa Farhadi; Kurosh Sedighi; AhmadAli Rabienataj Darzi; Yousef Vazifeshenas Simulation of natural convection melting in a cavity with fin using lattice Boltzmann method, International Journal for Numerical Methods in Fluids, Volume 70 (2012) no. 3, p. 313 | DOI:10.1002/fld.2691
  • M. Jourabian; M. Farhadi; A.A. Rabienataj Darzi Simulation of natural convection melting in an inclined cavity using lattice Boltzmann method, Scientia Iranica, Volume 19 (2012) no. 4, p. 1066 | DOI:10.1016/j.scient.2012.06.014
  • Elham Attar; Carolin Körner Lattice Boltzmann model for thermal free surface flows with liquid–solid phase transition, International Journal of Heat and Fluid Flow, Volume 32 (2011) no. 1, p. 156 | DOI:10.1016/j.ijheatfluidflow.2010.09.006
  • Mohammed El Ganaoui; R. Djebali Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number flows in enclosures, Comptes Rendus. Mécanique, Volume 338 (2010) no. 2, p. 85 | DOI:10.1016/j.crme.2009.12.008
  • Mohamed Amine Moussaoui; Mohamed Jami; Ahmed Mezrhab; Hassan Naji Computation of heat transfer and fluid flow in an obstructed channel using lattice Boltzmann method, Engineering Computations, Volume 27 (2010) no. 1, p. 106 | DOI:10.1108/02644401011008540

Cité par 30 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: