[Une méthode de type gaz sur réseau pour la transition solide/liquide]
Il s'agit de montrer dans le présent travail la possibilité de traiter des problèmes de transition de phase solide/liquide par une approche de type gaz sur réseau. Les résultats illustrent un bon accord avec les résultats existants dans le cas d'écoulement de convection naturelle en cavité ainsi que dans le cadre d'un problème test de solidification dirigée.
The present work uses the Lattice Boltzmann method for solving solid/liquid phase change problems. The computed results demonstrate a good agreement with the existing benchmark solution for natural convection and with the experimental solution for solid/liquid interface interacting with the flow field.
Mots-clés : Mécanique des fluides numérique, Changement de phase solide/liquide, Gaz sur réseau, Méthode enthalpique
El Alami Semma 1 ; Mohammed El Ganaoui 2 ; Rachid Bennacer 3
@article{CRMECA_2007__335_5-6_295_0, author = {El Alami Semma and Mohammed El Ganaoui and Rachid Bennacer}, title = {Lattice {Boltzmann} method for melting/solidification problems}, journal = {Comptes Rendus. M\'ecanique}, pages = {295--303}, publisher = {Elsevier}, volume = {335}, number = {5-6}, year = {2007}, doi = {10.1016/j.crme.2007.05.015}, language = {en}, }
TY - JOUR AU - El Alami Semma AU - Mohammed El Ganaoui AU - Rachid Bennacer TI - Lattice Boltzmann method for melting/solidification problems JO - Comptes Rendus. Mécanique PY - 2007 SP - 295 EP - 303 VL - 335 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2007.05.015 LA - en ID - CRMECA_2007__335_5-6_295_0 ER -
El Alami Semma; Mohammed El Ganaoui; Rachid Bennacer. Lattice Boltzmann method for melting/solidification problems. Comptes Rendus. Mécanique, Melting and solidification: processes and models, Volume 335 (2007) no. 5-6, pp. 295-303. doi : 10.1016/j.crme.2007.05.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.05.015/
[1] Lattice-Boltzmann computation of natural convection in a partitioned enclosure with inclined partitions attached to its hot wall, Physica A: Statist. Mech. Appl., Volume 368 (2006) no. 2, pp. 481-494
[2] Lattice-Boltzmann modelling of natural convection in an inclined square enclosure with partitions attached to its cold wall, Int. J. Heat Fluid Flow, Volume 27 (2006) no. 3, pp. 456-465
[3] Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, Volume 47 (1993), p. R2249
[4] A novel thermal model for the lattice Boltzmann method incompressible limit, J. Comput. Phys., Volume 146 (1998), pp. 282-300
[5] The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow, J. Crystal Growth, Volume 230 (2001), pp. 263-269
[6] Lattice Boltzmann model for anisotropic liquid–solid phase transition, Phys. Rev. Lett., Volume 86 (2001) no. 16, pp. 3578-3581
[7] Growth kinetics and melt convection, J. Crystal Growth, Volume 266 (2004), pp. 283-288
[8] The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001
[9] Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle, Int. J. Heat Mass Transfer, Volume 49 (2006), pp. 1195-1204
[10] Boltzmann approach to lattice-gas simulations, Europhys. Lett., Volume 9 (1989) no. 7, pp. 663-668
[11] Lattice gas dynamics with enhanced collisions, Europhys. Lett., Volume 9 (1989), pp. 345-349
[12] The lattice Boltzmann equation: theory and applications, Phys. Rep., Volume 222 (1992), pp. 145-197
[13] Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., Volume 118 (1995), pp. 329-347
[14] A numerical study on vortex shedding from two side by side cylinders using the lattice Boltzmann method (R. Bennacer; M. El Ganaoui; A.A. Mohamad; J. Sicard, eds.), Progress in Computational Heat and Mass Transfer, vol. I, Lavoisier-Tec & Doc., 2006, pp. 411-416
[15] Natural convection of air in a square cavity: a benchmark numerical solution, Int. J. Numer. Fluid Meth. Fluids, Volume 3 (1983), pp. 249-264
[16] Melting and solidification of a metal system in a rectangular cavity, Int. J. Heat Mass Transfer, Volume 27 (1984), pp. 113-123
[17] Solidification of pure metal at a vertical wall in the presence of liquid superheat, Int. J. Heat Mass Transfer, Volume 31 (1988), pp. 1735-1744
[18] An investigation of solutal thermal and flow fields in unidirectional alloy solidification, Int. J. Heat Mass Transfer, Volume 41 (1998), pp. 2485-2502
[19] Computational solution for fluid flow under solid/liquid phase change conditions, Int. J. Comput. Fluids, Volume 31 (2002) no. 4–7, pp. 539-556
[20] E. Semma, Etude numérique des transferts de chaleur et de masse durant la croissance dirigée : effet de paramètres de contrôle, Thèse de doctorat Franco-Marocaine, Université de la Méditerranée/Université Mohamed V, 2004
[21] Effects of anisotropy and solid/liquid thermal conductivity ratio on flow instabilities during inverted Bridgman growth, Int. J. Heat Mass Transfer, Volume 47 (2004), pp. 3403-3413
[22] E. Semma, M. El Ganaoui, R. Bennacer, A.A. Mohamad, Melting and solidification problem, the lattice Boltzmann method, Int. J. Thermal Sci. (2007), in press
- Review of Particle-Based Computational Methods and Their Application in the Computational Modelling of Welding, Casting and Additive Manufacturing, Metals, Volume 13 (2023) no. 8, p. 1392 | DOI:10.3390/met13081392
- A review on the application of lattice Boltzmann method for melting and solidification problems, Computational Materials Science, Volume 206 (2022), p. 111288 | DOI:10.1016/j.commatsci.2022.111288
- Recent advances in thermophysical properties enhancement of phase change materials for thermal energy storage, Solar Energy Materials and Solar Cells, Volume 231 (2021), p. 111309 | DOI:10.1016/j.solmat.2021.111309
- Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process, Journal of Thermal Analysis and Calorimetry, Volume 141 (2020) no. 2, p. 669 | DOI:10.1007/s10973-019-09038-2
- Review on Numerical Simulations for Solidification Melting of Nano-Enhanced Phase Change Materials (NEPCM), IOP Conference Series: Earth and Environmental Science, Volume 268 (2019) no. 1, p. 012114 | DOI:10.1088/1755-1315/268/1/012114
- Lattice Boltzmann simulation of melting of a phase change material confined within a cylindrical annulus with a conductive inner wall using a body-fitted non-uniform mesh, International Journal of Thermal Sciences, Volume 136 (2019), p. 549 | DOI:10.1016/j.ijthermalsci.2018.10.009
- Melting of a phase change material in presence of natural convection and radiation: A simplified model, Applied Thermal Engineering, Volume 130 (2018), p. 660 | DOI:10.1016/j.applthermaleng.2017.11.026
- Development and validation of a stabilized immersed boundary CFD model for freezing and melting with natural convection, Computers Fluids, Volume 172 (2018), p. 564 | DOI:10.1016/j.compfluid.2018.03.037
- Constrained ice melting around one cylinder in horizontal cavity accelerated using three heat transfer enhancement techniques, International Journal of Thermal Sciences, Volume 125 (2018), p. 231 | DOI:10.1016/j.ijthermalsci.2017.12.001
- Lattice Boltzmann Simulations for Melting and Resolidification of Ultrashort Laser Interaction with Thin Gold Film, International Journal of Thermophysics, Volume 39 (2018) no. 7 | DOI:10.1007/s10765-018-2409-9
- The Enthalpy-Transforming-Based Lattice Boltzmann Model for Solid–Liquid Phase Change, Journal of Heat Transfer, Volume 140 (2018) no. 10 | DOI:10.1115/1.4040345
- Probing the Rayleigh–Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method, Numerical Heat Transfer, Part A: Applications, Volume 73 (2018) no. 1, p. 34 | DOI:10.1080/10407782.2017.1420307
- Lattice Boltzmann technique for heat transport phenomena coupled with melting process, Heat and Mass Transfer, Volume 53 (2017) no. 1, p. 213 | DOI:10.1007/s00231-016-1811-8
- A comprehensive benchmark of fixed-grid methods for the modeling of melting, International Journal of Thermal Sciences, Volume 118 (2017), p. 69 | DOI:10.1016/j.ijthermalsci.2017.04.008
- Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions, Metallurgical and Materials Transactions A, Volume 48 (2017) no. 7, p. 3606 | DOI:10.1007/s11661-017-4120-z
- Lattice Boltzmann simulation of heat transfer with phase change in saturated soil during freezing process, Numerical Heat Transfer, Part B: Fundamentals, Volume 72 (2017) no. 5, p. 361 | DOI:10.1080/10407790.2017.1400311
- Simulation of mixed convection in a horizontal channel heated from below by the lattice Boltzmann method, The European Physical Journal Applied Physics, Volume 78 (2017) no. 3, p. 34806 | DOI:10.1051/epjap/2017170046
- , 2016 3rd International Conference on Renewable Energies for Developing Countries (REDEC) (2016), p. 1 | DOI:10.1109/redec.2016.7577543
- Thermal Lattice Boltzmann Simulation of Entropy Generation within a Square Enclosure for Sensible and Latent Heat Transfers, Applied Sciences, Volume 5 (2015) no. 4, p. 1904 | DOI:10.3390/app5041904
- Lattice Boltzmann simulation for solid–liquid phase change phenomenon of phase change material under constant heat flux, International Journal of Heat and Mass Transfer, Volume 86 (2015), p. 197 | DOI:10.1016/j.ijheatmasstransfer.2015.03.006
- Efficient Large-Scale Coating Microstructure Formation Using Realistic CFD Models, Journal of Thermal Spray Technology, Volume 24 (2015) no. 3, p. 283 | DOI:10.1007/s11666-014-0194-y
- RETRACTED: On the expedited melting of phase change material (PCM) through dispersion of nanoparticles in the thermal storage unit, Computers Mathematics with Applications, Volume 67 (2014) no. 7, p. 1358 | DOI:10.1016/j.camwa.2014.02.004
- Melting with convection and radiation in a participating phase change material, Applied Energy, Volume 109 (2013), p. 454 | DOI:10.1016/j.apenergy.2012.11.031
- Convection-dominated melting of phase change material in partially heated cavity: lattice Boltzmann study, Heat and Mass Transfer, Volume 49 (2013) no. 4, p. 555 | DOI:10.1007/s00231-012-1102-y
- Natural convection melting of NEPCM in a cavity with an obstacle using lattice Boltzmann method, International Journal of Numerical Methods for Heat Fluid Flow, Volume 24 (2013) no. 1, p. 221 | DOI:10.1108/hff-06-2011-0138
- Simulation of natural convection melting in a cavity with fin using lattice Boltzmann method, International Journal for Numerical Methods in Fluids, Volume 70 (2012) no. 3, p. 313 | DOI:10.1002/fld.2691
- Simulation of natural convection melting in an inclined cavity using lattice Boltzmann method, Scientia Iranica, Volume 19 (2012) no. 4, p. 1066 | DOI:10.1016/j.scient.2012.06.014
- Lattice Boltzmann model for thermal free surface flows with liquid–solid phase transition, International Journal of Heat and Fluid Flow, Volume 32 (2011) no. 1, p. 156 | DOI:10.1016/j.ijheatfluidflow.2010.09.006
- Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number flows in enclosures, Comptes Rendus. Mécanique, Volume 338 (2010) no. 2, p. 85 | DOI:10.1016/j.crme.2009.12.008
- Computation of heat transfer and fluid flow in an obstructed channel using lattice Boltzmann method, Engineering Computations, Volume 27 (2010) no. 1, p. 106 | DOI:10.1108/02644401011008540
Cité par 30 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier