Boussinesq's hypothesis is at the heart of eddy viscosity models, which are used in many different fields to model turbulent flows. In its present time formulation, this hypothesis corresponds to an alignment between the Reynolds stress and mean strain tensors. We begin with historical remarks on Boussinesq's results and recall that he introduced a local averaging twenty years before Reynolds, but using an approach that prevented him from discovering Reynolds' stress tensor. We then introduce an indicator that characterizes the validity of this hypothesis. For experimental and numerical databases, when the tensors are known, this can be used to directly estimate the validity of this hypothesis. We show, using several different databases, that this hypothesis is almost never verified. We address, in conclusion, the analogy with kinetic theory, and the reason why this analogy cannot be applied, in general, for turbulent flows.
L'hypothèse de Boussinesq est au coeur des modèles de viscosité, utilisés dans un grand nombre de contextes pour modéliser des écoulements turbulents. Dans sa formulation moderne, cette hypothèse correspond à un alignement entre tenseur de contrainte de Reynolds et tenseur de déformation moyen. Nous rappelons le contexte historique de l'énoncé de cette hypothèse, en soulignant que Boussinesq avait introduit une moyenne locale vingt ans avant Reynolds, mais en effectuant une erreur qui l'a privé de la mise en évidence du tenseur de Reynolds. Nous introduisons ensuite un indicateur, compris entre 0 et 1, indiquant le degré de validité de cette hypothèse. Pour des bases de données expérimentales et numériques, lorsque les différents tenseurs sont connus, ceci permet de tester directement, a priori, cette hypothèse. Nous montrons ainsi, utilisant différentes bases de données d'écoulements turbulents, que l'hypothèse n'est presque jamais vérifiée. Nous discutons en conclusion de la théorie cinétique des gaz et de la raison pour laquelle cette analogie est discutable pour les écoulements turbulents.
Accepted:
Published online:
Mot clés : Mécanique des fluides, Turbulence, Equation constitutive
François G. Schmitt 1
@article{CRMECA_2007__335_9-10_617_0, author = {Fran\c{c}ois G. Schmitt}, title = {About {Boussinesq's} turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity}, journal = {Comptes Rendus. M\'ecanique}, pages = {617--627}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.004}, language = {en}, }
TY - JOUR AU - François G. Schmitt TI - About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity JO - Comptes Rendus. Mécanique PY - 2007 SP - 617 EP - 627 VL - 335 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2007.08.004 LA - en ID - CRMECA_2007__335_9-10_617_0 ER -
François G. Schmitt. About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 617-627. doi : 10.1016/j.crme.2007.08.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.004/
[1] A First Course in Turbulence, MIT Press, Cambridge, 1972
[2] Turbulent Modeling for CFD, DCW Industries, La Canada, 1998
[3] Turbulent Flows, Cambridge University Press, Cambridge, 2000
[4] An Introduction to Turbulent Flow, Cambridge University Press, Cambridge, 2000
[5] Turbulent Flow: Analysis, Measurement, and Prediction, John Wiley and Sons, Hoboken, 2002
[6] On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. R. Soc. London A, Volume 186 (1895), pp. 123-164
[7] Proc. R. Soc. London A, 451 (1995), pp. 1-318
[8] Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995
[9] Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l'Académie des Sciences, Volume XXIII (1877) no. 1, pp. 1-680
[10] Bericht über Untersuchungen zur ausgebildeten Turbulenz, Z. Angew. Math. Mech., Volume 5 (1925), pp. 136-139
[11] Rapport sur un mémoire de M. Boussinesq, Mémoires présentés par divers savants à l'Académie des Sciences, Volume XXIII (1877) no. 1, p. I-XXII
[12] Discours et Notices, Gauthier–Villars, Paris, 1936
[13] Mémoire sur l'influence des frottements dans les mouvements réguliers des fluides, J. Math. Pures Appl. Sér. II, Volume 13 (1868), pp. 377-423
[14] An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Phil. Trans. R. Soc. London A, Volume 174 (1883), pp. 935-982
[15] On the propagation of laminar motion through a turbulently moving inviscid liquid, Phil. Mag., Volume 24 (1887), pp. 342-353
[16] Théorie de l'écoulement tourbillonnant et tumultueux des liquides, Gauthier–Villars et fils, Paris, 1897
[17] The numerical computation of turbulent flows, Comput. Meth. Appl. Mech. Eng., Volume 3 (1974), pp. 269-289
[18] Experimental study of the constitutive equation for an axisymmetric complex turbulent flow, Zeit. Angew. Math. Mech., Volume 80 (2000), pp. 815-825
[19] Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data, Comm. Nonlinear Sci. Numer. Simul., Volume 12 (2007), pp. 1251-1264
[20] et al. An investigation of turbulent plane Couette flow at low Reynolds numbers, J. Fluid Mech., Volume 286 (1995), pp. 291-325
[21] Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., Volume 177 (1987), pp. 133-166
[22] Direct numerical simulation of turbulent channel flow up to , Phys. Fluids, Volume 11 (1999), pp. 943-945
[23] Direct simulation of a turbulent boundary layer up to , J. Fluid Mech., Volume 187 (1988), pp. 61-98
[24] Direct numerical simulation of the turbulent flow in a pipe with annular cross-section, Eur. J. Mech. Fluid Ser., Volume 21 (2002), pp. 413-427
[25] Turbulent channel and Couette flows using a anisotropic model, AIAA J., Volume 25 (1986), pp. 414-420
[26] On nonlinear and models of turbulence, J. Fluid Mech., Volume 178 (1987), p. 458
[27] Status of large eddy simulation: Results of a workshop, Trans. ASME: J. Fluid Engrg., Volume 119 (1997), pp. 248-262
[28] Direct investigation of the K-transport equation for a complex turbulent flow, J. Turbulence, Volume 3 (2003), p. 021
[29] LDV measurements of the flow field in the nozzle region of a confined double annular burner, Trans. ASME: J. Fluid Engrg., Volume 123 (2001), pp. 228-236
[30] A more general effective-viscosity hypothesis, J. Fluid Mech., Volume 72 (1975), pp. 331-340
[31] Theory of invariants (A.C. Eringen, ed.), Continuum Physics, vol. 1, Academic Press, New York, 1971, pp. 239-353
[32] Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation, Phys. Fluids, Volume 27 (1984), pp. 1377-1387
[33] Toward a turbulent constitutive relation, J. Fluid Mech., Volume 41 (1970), pp. 413-434
[34] Limitations of gradient transport models in random walks and turbulence, Adv. Geophys., Volume 18A (1974), pp. 25-60
[35] Difference-quotient model: a generalization of Prandtl's mixing-length theory, Phys. Rev. E, Volume 49 (1994), pp. 1260-1268
[36] Memory effect in a turbulent boundary-layer flow due to a relatively strong axial variation of the mean-velocity gradient, Appl. Sci. Res., Volume 29 (1974), pp. 1-13
[37] Reynolds stress and the physics of turbulent momentum transport, J. Fluid Mech., Volume 220 (1990), pp. 99-124
[38] Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient, part I, J. Fluid Mech., Volume 104 (1981), pp. 311-347
[39] On modelling the Reynolds stress in the context of continuum mechanics, Comm. Nonlinear. Sci. Numer. Simul., Volume 9 (2004), pp. 543-559
[40] Nonlocal analysis of the Reynolds stress in turbulent shear flow, Phys. Fluids, Volume 17 (2005), p. 115102
[41] On the role of accelerating fluid particles in the generation of Reynolds stress, Phys. Fluids A, Volume 4 (1992), pp. 1317-1319
Cited by Sources:
Comments - Policy