Within the framework of the Stokes approximation, a method is proposed for calculating the drag and the torque acted on a rigid particle by an incompressible viscous fluid, when the fluid–particle boundary conditions are slip conditions. By using the Fourier Transform and a reciprocity formula, the drag and torque are deduced from these obtained for two simple vibration motions of the particle in a fluid at rest. The results are explicitly given in the case of a spherical particle. They are in agreement with the formulae known in various special cases.
Dans le cadre de l'approximation de Stokes, une méthode est proposée pour calculer les efforts exercés sur une particule solide par un fluide visqueux incompressible, les conditions aux limites fluide–particule étant celles du glissement. En utilisant la Transformée de Fourier et une formule de réciprocité, les efforts sont déduits de ceux obtenus pour deux mouvements simples de vibration de la particule dans un fluide au repos. Les résultats sont explicités pour une particule sphérique. Ils sont en accord avec les expressions connues de la littérature.
Accepted:
Published online:
Mot clés : Mécanique des fluides, Equations de Stokes, Traînée, Couple, Terme d'histoire de Boussinesq–Basset
Renée Gatignol 1
@article{CRMECA_2007__335_9-10_606_0, author = {Ren\'ee Gatignol}, title = {On the history term of {Boussinesq{\textendash}Basset} when the viscous fluid slips on the particle}, journal = {Comptes Rendus. M\'ecanique}, pages = {606--616}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.013}, language = {en}, }
Renée Gatignol. On the history term of Boussinesq–Basset when the viscous fluid slips on the particle. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 606-616. doi : 10.1016/j.crme.2007.08.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.013/
[1] On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc., Volume 9 (1851), pp. 8-106
[2] Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, C. R. Acad. Sci. Paris, Volume 100 (1885), pp. 935-937
[3] A.B. Basset, A treatise on hydrodynamics, Cambridge, 1888
[4] P.A. Bois, Joseph Boussinesq, a pioneer of mechanical modelling at the end of the 19th Century, C. R. Mecanique 335 (2007), this issue, | DOI
[5] Effect of the history term on the motion of rigid spheres in a viscous fluid, Int. J. Multiphase Flow, Volume 20 (1994), pp. 547-556
[6] The Faxèn formulae for a rigid particle in an unsteady non-uniform Stokes flow, J. Mécanique Théorique Appliquée, Volume 1 (1983), pp. 143-160
[7] M. Aggad, Généralisations des théorèmes de Faxèn. Applications à la mise en vitesse de particules sphériques, Thèse de l'Université Pierre et Marie Curie, Paris, 1989
[8] F. Feuillebois, Certains problèmes d'écoulement mixtes fluide–particules solides, Thèse des Sciences Mathématiques, Paris, 1980
[9] Leçons sur les fluides visqueux, Gauthier–Villars, Paris, 1943
[10] General solution of the particle momentum equation in unsteady Stokes flows, J. Fluid Mech., Volume 370 (1998), pp. 53-72
[11] On the viscous motion of a small particle in a rotating cylinder, J. Fluid Mech., Volume 469 (2002), pp. 257-286
[12] Dynamics of suspended particles in eccentrically rotating flows, J. Fluid Mech., Volume 535 (2005), pp. 101-110
[13] DSMC simulation of pressure driven flows and heat transfer in microfilters (M.S. Ivanov; A.K. Rebrov, eds.), Proceedings of the 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, 22–27 July 2006, Publishing House of the Siberian Branch of the Russian Academy of Science, Novosibirsk, 2007, pp. 444-449
[14] On the motion of a sphere with arbitrary slip in a viscous incompressible fluid, Physica, Volume 80 A (1975), pp. 89-97
[15] The equation of motion of a small viscous sphere in an unsteady flow with interface slip, Int. J. Multiphase Flow, Volume 21 (1995), pp. 315-321
[16] Rarefied Gas Dynamics, Plenum Press, New York, 1969
[17] A generalization of Faxèn's theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow, Physica, Volume 76 (1974), pp. 235-246
[18] Fourier Integrals for Practical Applications, van Nostrand Company, Toronto, 1957 (pp. 55 and 57)
[19] A novel way of computing the Basset term in unsteady multiphase flow computations, Phys. Fluids A, Volume 4 (1992), pp. 1579-1582
[20] Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: The mesoscopic Eulerian formalism and the two-point probability density function method, Phys. Fluids, Volume 18 (2006), pp. 125107-125116
[21] Particle dispersion in isotropic turbulence under Stokes drag and Basset force with gravitational settling, J. Fluid Mech., Volume 225 (1991), pp. 481-495
Cited by Sources:
Comments - Policy