Comptes Rendus
Unsteady flows, turbulent flows
On the history term of Boussinesq–Basset when the viscous fluid slips on the particle
Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 606-616.

Within the framework of the Stokes approximation, a method is proposed for calculating the drag and the torque acted on a rigid particle by an incompressible viscous fluid, when the fluid–particle boundary conditions are slip conditions. By using the Fourier Transform and a reciprocity formula, the drag and torque are deduced from these obtained for two simple vibration motions of the particle in a fluid at rest. The results are explicitly given in the case of a spherical particle. They are in agreement with the formulae known in various special cases.

Dans le cadre de l'approximation de Stokes, une méthode est proposée pour calculer les efforts exercés sur une particule solide par un fluide visqueux incompressible, les conditions aux limites fluide–particule étant celles du glissement. En utilisant la Transformée de Fourier et une formule de réciprocité, les efforts sont déduits de ceux obtenus pour deux mouvements simples de vibration de la particule dans un fluide au repos. Les résultats sont explicités pour une particule sphérique. Ils sont en accord avec les expressions connues de la littérature.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2007.08.013
Keywords: Fluid mechanics, Stokes equation, Drag, Torque, History term of Boussinesq–Basset
Mot clés : Mécanique des fluides, Equations de Stokes, Traînée, Couple, Terme d'histoire de Boussinesq–Basset

Renée Gatignol 1

1 Laboratoire de modélisation en mécanique, Université Pierre et Marie Curie & CNRS, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRMECA_2007__335_9-10_606_0,
     author = {Ren\'ee Gatignol},
     title = {On the history term of {Boussinesq{\textendash}Basset} when the viscous fluid slips on the particle},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {606--616},
     publisher = {Elsevier},
     volume = {335},
     number = {9-10},
     year = {2007},
     doi = {10.1016/j.crme.2007.08.013},
     language = {en},
}
TY  - JOUR
AU  - Renée Gatignol
TI  - On the history term of Boussinesq–Basset when the viscous fluid slips on the particle
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 606
EP  - 616
VL  - 335
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2007.08.013
LA  - en
ID  - CRMECA_2007__335_9-10_606_0
ER  - 
%0 Journal Article
%A Renée Gatignol
%T On the history term of Boussinesq–Basset when the viscous fluid slips on the particle
%J Comptes Rendus. Mécanique
%D 2007
%P 606-616
%V 335
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2007.08.013
%G en
%F CRMECA_2007__335_9-10_606_0
Renée Gatignol. On the history term of Boussinesq–Basset when the viscous fluid slips on the particle. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 606-616. doi : 10.1016/j.crme.2007.08.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.013/

[1] G.G. Stokes On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc., Volume 9 (1851), pp. 8-106

[2] J. Boussinesq Sur la résistance qu'oppose un fluide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, C. R. Acad. Sci. Paris, Volume 100 (1885), pp. 935-937

[3] A.B. Basset, A treatise on hydrodynamics, Cambridge, 1888

[4] P.A. Bois, Joseph Boussinesq, a pioneer of mechanical modelling at the end of the 19th Century, C. R. Mecanique 335 (2007), this issue, | DOI

[5] D.J. Vojir; E.E. Michaelides Effect of the history term on the motion of rigid spheres in a viscous fluid, Int. J. Multiphase Flow, Volume 20 (1994), pp. 547-556

[6] R. Gatignol The Faxèn formulae for a rigid particle in an unsteady non-uniform Stokes flow, J. Mécanique Théorique Appliquée, Volume 1 (1983), pp. 143-160

[7] M. Aggad, Généralisations des théorèmes de Faxèn. Applications à la mise en vitesse de particules sphériques, Thèse de l'Université Pierre et Marie Curie, Paris, 1989

[8] F. Feuillebois, Certains problèmes d'écoulement mixtes fluide–particules solides, Thèse des Sciences Mathématiques, Paris, 1980

[9] H. Villat Leçons sur les fluides visqueux, Gauthier–Villars, Paris, 1943

[10] C.F.M. Coimbra; R.H. Rangel General solution of the particle momentum equation in unsteady Stokes flows, J. Fluid Mech., Volume 370 (1998), pp. 53-72

[11] C.F.M. Coimbra; M.H. Kobayashi On the viscous motion of a small particle in a rotating cylinder, J. Fluid Mech., Volume 469 (2002), pp. 257-286

[12] E.L. Lim; C.F. Coimbra; M.H. Kobayashi Dynamics of suspended particles in eccentrically rotating flows, J. Fluid Mech., Volume 535 (2005), pp. 101-110

[13] D. Ameur; C. Croizet; F. Maroteaux; R. Gatignol DSMC simulation of pressure driven flows and heat transfer in microfilters (M.S. Ivanov; A.K. Rebrov, eds.), Proceedings of the 25th International Symposium on Rarefied Gas Dynamics, St. Petersburg, 22–27 July 2006, Publishing House of the Siberian Branch of the Russian Academy of Science, Novosibirsk, 2007, pp. 444-449

[14] A.M. Albano; D. Bedeaux; P. Mazur On the motion of a sphere with arbitrary slip in a viscous incompressible fluid, Physica, Volume 80 A (1975), pp. 89-97

[15] E.E. Michaelides; Z.-G. Feng The equation of motion of a small viscous sphere in an unsteady flow with interface slip, Int. J. Multiphase Flow, Volume 21 (1995), pp. 315-321

[16] M. Kogan Rarefied Gas Dynamics, Plenum Press, New York, 1969

[17] P. Mazur; D. Bedeaux A generalization of Faxèn's theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow, Physica, Volume 76 (1974), pp. 235-246

[18] G.A. Campbell; R.M. Foster Fourier Integrals for Practical Applications, van Nostrand Company, Toronto, 1957 (pp. 55 and 57)

[19] E.E. Michaelides A novel way of computing the Basset term in unsteady multiphase flow computations, Phys. Fluids A, Volume 4 (1992), pp. 1579-1582

[20] O. Simonin; L.I. Zaichik; V.M. Alipchenkov; P. Février Connection between two statistical approaches for the modelling of particle velocity and concentration distributions in turbulent flow: The mesoscopic Eulerian formalism and the two-point probability density function method, Phys. Fluids, Volume 18 (2006), pp. 125107-125116

[21] R. Mei; R.J. Adrian; T.J. Hanratty Particle dispersion in isotropic turbulence under Stokes drag and Basset force with gravitational settling, J. Fluid Mech., Volume 225 (1991), pp. 481-495

Cited by Sources:

Comments - Policy