We examine the linear stability of a liquid layer heated from below (the classical Rayleigh–Benard problem) but laterally confined between four vertical rigid and adiabatic boundaries. The main feature of the present study is that the height of the layer is much greater than the two other horizontal dimensions. The Soret effect is also taken into account. The ultimate objective of the study is a better knowledge of the operation of thermogravitational columns, and the search for a possible new way to measure positive Soret coefficients based on the variation of the critical Rayleigh number.
On examine la stabilité linéaire d'une couche liquide chauffée par le bas (le problème classique de Rayleigh–Bénard) mais confinée latéralement par quatre parois rigides et adiabatiques. La caractéristique essentielle de cette étude est que la hauteur de la couche est beaucoup plus grande que les deux autres dimensions horizontales. On prend aussi en compte l'effet Soret. L'objectif ultime de cette étude est une meilleure connaissance du mode opératoire de colonnes thermogravitationnelles ainsi que la recherche d' une méthode nouvelle pour mesurer des coefficients Soret positifs, basée sur la variation du nombre de Rayleigh critique.
Accepted:
Published online:
Mot clés : Mécanique des fluides numérique, Rayleigh–Bénard, Stabilité, Galerkin, Thermodiffusion, Soret
Jean K. Platten 1; Manuel Marcoux 2; Abdelkader Mojtabi 2
@article{CRMECA_2007__335_9-10_638_0, author = {Jean K. Platten and Manuel Marcoux and Abdelkader Mojtabi}, title = {The {Rayleigh{\textendash}Benard} problem in extremely confined geometries with and without the {Soret} effect}, journal = {Comptes Rendus. M\'ecanique}, pages = {638--654}, publisher = {Elsevier}, volume = {335}, number = {9-10}, year = {2007}, doi = {10.1016/j.crme.2007.08.011}, language = {en}, }
TY - JOUR AU - Jean K. Platten AU - Manuel Marcoux AU - Abdelkader Mojtabi TI - The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect JO - Comptes Rendus. Mécanique PY - 2007 SP - 638 EP - 654 VL - 335 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2007.08.011 LA - en ID - CRMECA_2007__335_9-10_638_0 ER -
%0 Journal Article %A Jean K. Platten %A Manuel Marcoux %A Abdelkader Mojtabi %T The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect %J Comptes Rendus. Mécanique %D 2007 %P 638-654 %V 335 %N 9-10 %I Elsevier %R 10.1016/j.crme.2007.08.011 %G en %F CRMECA_2007__335_9-10_638_0
Jean K. Platten; Manuel Marcoux; Abdelkader Mojtabi. The Rayleigh–Benard problem in extremely confined geometries with and without the Soret effect. Comptes Rendus. Mécanique, Volume 335 (2007) no. 9-10, pp. 638-654. doi : 10.1016/j.crme.2007.08.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.08.011/
[1] Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Clarendon, 1961 (pp. 9–75)
[2] Convection in Liquids, Springer, Berlin, 1984 (Chapter IX)
[3] A variational formulation for the stability of flows with temperature gradients, Int. J. Engrg. Sci., Volume 9 (1971), pp. 855-869
[4] The two component Bénard problem with Poiseuille flow, J. Non-Equilib. Thermodyn., Volume 2 (1977) no. 4, pp. 211-232
[5] Influence of through-flow on linear pattern formation properties in binary mixture convection, Phys. Rev. E, Volume 54 (1996), pp. 1510-1529
[6] Convection mixte en fluide binaire avec effet Soret : étude analytique de la transition vers les rouleaux 2d, C. R. Mecanique, Volume 333 (2005), pp. 179-186
[7] Convection in a box: linear theory, J. Fluid Mech., Volume 30 (1967), pp. 465-478
[8] Thermogravitational thermal diffusion in liquid polymer solutions, Macromolecules, Volume 27 (1994), pp. 4968-4971
[9] Thermogravitational measurement of the Soret coefficient of liquid mixtures, J. Phys.: Condens. Matter, Volume 10 (1998), pp. 3321-3331
[10] Soret coefficient of some binary liquid mixtures, J. Non-Equilib. Thermodyn., Volume 24 (1999), pp. 228-233
[11] Precise determination of the Soret, thermodiffusion and isothermal diffusion coefficients of binary mixtures of dodecane, isobutylbenzene and 1,2,3,4-tetrahydronaphtalene, Philosophical Magazine, Volume 83 (2003) no. 17–18, pp. 2001-2010
[12] Determination of the thermodiffusion coefficient in three binary organic liquid mixtures by the thermogravitational method, Philosophical Magazine, Volume 83 (2003) no. 17–18, pp. 2011-2015
[13] J.-F. Dutrieux, Contributions à la métrologie du coefficient Soret, Ph.D. thesis, University of Mons-Hainaut, Belgium, 2002
[14] M.M. Bou-Ali, J.K. Platten, J.A. Madariaga, C.M. Santamaria, Soret effect convective coupling and instabilities in thermogravitational column, in: J.P. Meyer, A.G. Malan (Eds.), Proceedings of the 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT 2005, Cairo, Egypt, 19–22 September 2005, paper BM1
[15] Stability of convection in a vertical binary fluid layer with an adverse density gradient, Phys. Rev. E, Volume 59 (1999) no. 1, pp. 1250-1252
[16] On the theory of isotope separation by thermal diffusion, Phys. Rev., Volume 55 (1939), pp. 1083-1095
[17] The theory of separation of isotopes by thermal diffusion, Phys. Rev., Volume 81 (1951), pp. 844-848
[18] G. Labrosse, Boussinesq approximation, and beyond, in tall thermo-gravitational column, C. R. Mecanique 335 (2007), this issue; | DOI
[19] Simulation numérique 2D de la séparation dans une colonne de thermogravitation et comparaison avec la théorie de Furry–Jones–Onsager–Majumdar, Entropie, Volume 198/199 (1996), pp. 25-29
[20] Convection in binary mixtures: A Galerkin model with impermeable boundary conditions, Phys. Rev. A, Volume 35 (1987), pp. 3997-4000
[21] Soret effect and free convection: a way to measure Soret coefficients (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, 2002, pp. 313-333
[22] Transition between steady states, traveling waves and modulated waves in the system water–isopropanol heated from below, Phys. Rev. A, Volume 38 (1988) no. 6, pp. 3147-3150
[23] Effect of the separation ratio on the transition between travelling waves and steady convection in the two-component Rayleigh–Benard problem, Eur. J. Mech., B/Fluids, Volume 15 (1996) no. 2, pp. 241-257
[24] On the instability of a fluid when heated from below, Proc. Roy. Soc. A, Volume 152 (1935), pp. 586-594
[25] Oscillatory motion in Bénard cell due to the Soret effect, J. Fluid Mech., Volume 60 (1973), pp. 305-319
[26] LDV study of some free convection problems at extremely slow velocities: Soret driven convection and Marangoni convection (R.J. Adrian; T. Asanuma; D.F.G. Durão; F. Durst; J.H. Whitelaw, eds.), Laser Anemometry in Fluid Mechanics, vol. 3, LADOAN—Instituto Superior Técnico, Lisbon, 1988, pp. 245-260
[27] O. Lhost, Contribution expérimentale à l'étude de la convection libre induite par effet Soret, Ph.D. thesis, University of Mons, 1990
[28] Optical measurement of the Soret coefficient of ethanol/water solutions, J. Chem. Phys., Volume 88 (1988) no. 10, pp. 6512-6524
[29] Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures, J. Chem. Phys., Volume 104 (1996), pp. 6881-6892
[30] Measurement of transport coefficients by an optical grating technique (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, 2002, pp. 189-210
[31] Thermal diffusion and convective stability: an analysis of the convected fluxes, Phys. Fluids, Volume 15 (1972), pp. 1707-1714
[32] Onset of free convection in solutions with variable Soret coefficients, J. Non-Equilib. Thermodyn., Volume 27 (2002), pp. 25-44
[33] Théorie analytique de la chaleur, Gauthiers-Villars, Paris, 1903
[34] Thermal instability of a viscous fluid, Quart. Appl. Math., Volume 17 (1959), pp. 25-42
[35] Instability of a viscous liquid of variable density in a vertical Hele-Shaw cell, J. Fluid Mech., Volume 7 (1960), pp. 501-515
[36] Flow transitions in laminar Rayleigh–Benard convection in a cubical cavity at moderate Rayleigh numbers, Int. J. Heat Mass Trans., Volume 42 (1999), pp. 753-769
[37] A. Bergeon, University Paul Sabatier and Institut de Mécanique des Fluides, Toulouse, private communication
[38] Thermodiffusion in porous media and its consequences (W. Köhler; S. Wiegand, eds.), Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics, vol. 584, 2002, pp. 389-427
Cited by Sources:
Comments - Policy