Comptes Rendus
Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain
Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 763-767.

We construct the asymptotics (as ε0) of solutions to the Neumann problem for the Laplace equation and of the corresponding Dirichlet integral. The problem concerns a three-dimensional domain having two connected components of the boundary at the distance ε>0.

Nous construisons les développements asymptotiques (lorsque ε tend vers 0) des solutions d'un problème de Neumann pour l'équation de Laplace ainsi que le développement asymptotique de l'intégrale de Dirichlet correspondante. Le problème est défini dans un domaine tri-dimensionnel avec un bord ayant deux composantes connexes distantes de ε>0.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2007.10.001
Keywords: Singularly perturbed Neumann problem, Touching surfaces, Dirichlet integral, Thin ligament
Mot clés : Problème singularement perturbé, Surfaces en contact, Integrale Dirichlet, Ligament fin

Giuseppe Cardone 1; Sergey A. Nazarov 2; Jan Sokolowski 3; Jari Taskinen 4

1 Università del Sannio, Dipartimento di Ingegneria, Piazza Roma, 21, 84100 Benevento, Italy
2 Institute of Mechanical Engineering Problems, V.O., Bolshoi pr. 61, 199178 St. Petersburg, Russia
3 Université Henri-Poincaré, Nancy 1, département de mathematiques, B.P. 239, 54506 Vandoeuvre les Nancy cedex, France
4 University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, 00014 Helsinki, Finland
@article{CRMECA_2007__335_12_763_0,
     author = {Giuseppe Cardone and Sergey A. Nazarov and Jan Sokolowski and Jari Taskinen},
     title = {Asymptotics of {Neumann} harmonics when a cavity is close to the exterior boundary of the domain},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {763--767},
     publisher = {Elsevier},
     volume = {335},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crme.2007.10.001},
     language = {en},
}
TY  - JOUR
AU  - Giuseppe Cardone
AU  - Sergey A. Nazarov
AU  - Jan Sokolowski
AU  - Jari Taskinen
TI  - Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain
JO  - Comptes Rendus. Mécanique
PY  - 2007
SP  - 763
EP  - 767
VL  - 335
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2007.10.001
LA  - en
ID  - CRMECA_2007__335_12_763_0
ER  - 
%0 Journal Article
%A Giuseppe Cardone
%A Sergey A. Nazarov
%A Jan Sokolowski
%A Jari Taskinen
%T Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain
%J Comptes Rendus. Mécanique
%D 2007
%P 763-767
%V 335
%N 12
%I Elsevier
%R 10.1016/j.crme.2007.10.001
%G en
%F CRMECA_2007__335_12_763_0
Giuseppe Cardone; Sergey A. Nazarov; Jan Sokolowski; Jari Taskinen. Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 763-767. doi : 10.1016/j.crme.2007.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.001/

[1] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevskii Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece, Funkt. Anal. i Prilozhen., Volume 16 (1982) no. 2, pp. 39-46 (English transl.: Funct. Anal. Appl., 16, 1982, pp. 108-114)

[2] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevskij The Dirichlet problem in domains with thin cross connections, Sibirsk. Mat. Zh., Volume 25 (1984) no. 2, pp. 161-179 (in Russian); English transl.: Sib. Math. J., 25, 4, 1984, pp. 297-313

[3] S.A. Nazarov Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain, Izv. Ross. Akad. Nauk Ser. Mat., Volume 58 (1994) no. 1, pp. 92-120 (English transl.: Math. Izvestiya, 44, 1, 1995, pp. 91-118)

[4] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevskij Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Operator Theory: Advances and Applications, vol. 112, Tbilisi Univ., Tbilisi, 1981 (in Russian); English transl.:, 2000, Birkhäuser-Verlag, Basel

[5] S.A. Nazarov Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001

[6] D.I. Sherman One particular Dirichlet problem for a doubly connected region whose boundaries are extremely close together in a narrow zone, Mech. Solids, Volume 15 (1980) no. 3, pp. 76-87 (in Russian)

[7] S.A. Nazarov; O.R. Polyakova Asymptotic expansions of eigenvalues of the Neumann problem in a domain with a thin bridge, Sibirsk. Mat. Zh., Volume 33 (1992) no. 4, pp. 80-96 (English transl.: Sib. Math. J., 33, 4, 1992, pp. 618-633)

[8] J.G. Huout, A. Munnier, On the motion and collisions of rigid bodies in an ideal fluid, Prépublications de l'IECN, 33 (2006)

[9] X. Markenscoff; J. Dundurs Amplification of stresses in thin ligaments, Int. J. Solids Structures, Volume 29 (1992), pp. 1883-1888

[10] S.A. Nazarov; O.R. Polyakova Deformation of elastic bodies with thin ligaments, Prikl. Mat. Mekh., Volume 50 (1992) no. 5, pp. 52-65 (English transl.: J. Appl. Math. Mech., 56, 5, 1992, pp. 651-664)

Cited by Sources:

Comments - Policy