We construct the asymptotics (as ) of solutions to the Neumann problem for the Laplace equation and of the corresponding Dirichlet integral. The problem concerns a three-dimensional domain having two connected components of the boundary at the distance .
Nous construisons les développements asymptotiques (lorsque ε tend vers 0) des solutions d'un problème de Neumann pour l'équation de Laplace ainsi que le développement asymptotique de l'intégrale de Dirichlet correspondante. Le problème est défini dans un domaine tri-dimensionnel avec un bord ayant deux composantes connexes distantes de .
Accepted:
Published online:
Mot clés : Problème singularement perturbé, Surfaces en contact, Integrale Dirichlet, Ligament fin
Giuseppe Cardone 1; Sergey A. Nazarov 2; Jan Sokolowski 3; Jari Taskinen 4
@article{CRMECA_2007__335_12_763_0, author = {Giuseppe Cardone and Sergey A. Nazarov and Jan Sokolowski and Jari Taskinen}, title = {Asymptotics of {Neumann} harmonics when a cavity is close to the exterior boundary of the domain}, journal = {Comptes Rendus. M\'ecanique}, pages = {763--767}, publisher = {Elsevier}, volume = {335}, number = {12}, year = {2007}, doi = {10.1016/j.crme.2007.10.001}, language = {en}, }
TY - JOUR AU - Giuseppe Cardone AU - Sergey A. Nazarov AU - Jan Sokolowski AU - Jari Taskinen TI - Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain JO - Comptes Rendus. Mécanique PY - 2007 SP - 763 EP - 767 VL - 335 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2007.10.001 LA - en ID - CRMECA_2007__335_12_763_0 ER -
%0 Journal Article %A Giuseppe Cardone %A Sergey A. Nazarov %A Jan Sokolowski %A Jari Taskinen %T Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain %J Comptes Rendus. Mécanique %D 2007 %P 763-767 %V 335 %N 12 %I Elsevier %R 10.1016/j.crme.2007.10.001 %G en %F CRMECA_2007__335_12_763_0
Giuseppe Cardone; Sergey A. Nazarov; Jan Sokolowski; Jari Taskinen. Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain. Comptes Rendus. Mécanique, Volume 335 (2007) no. 12, pp. 763-767. doi : 10.1016/j.crme.2007.10.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.001/
[1] Asymptotics of the solution of the Dirichlet problem in domains with a thin crosspiece, Funkt. Anal. i Prilozhen., Volume 16 (1982) no. 2, pp. 39-46 (English transl.: Funct. Anal. Appl., 16, 1982, pp. 108-114)
[2] The Dirichlet problem in domains with thin cross connections, Sibirsk. Mat. Zh., Volume 25 (1984) no. 2, pp. 161-179 (in Russian); English transl.: Sib. Math. J., 25, 4, 1984, pp. 297-313
[3] Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain, Izv. Ross. Akad. Nauk Ser. Mat., Volume 58 (1994) no. 1, pp. 92-120 (English transl.: Math. Izvestiya, 44, 1, 1995, pp. 91-118)
[4] Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Operator Theory: Advances and Applications, vol. 112, Tbilisi Univ., Tbilisi, 1981 (in Russian); English transl.:, 2000, Birkhäuser-Verlag, Basel
[5] Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates, Nauchnaya Kniga, Novosibirsk, 2001
[6] One particular Dirichlet problem for a doubly connected region whose boundaries are extremely close together in a narrow zone, Mech. Solids, Volume 15 (1980) no. 3, pp. 76-87 (in Russian)
[7] Asymptotic expansions of eigenvalues of the Neumann problem in a domain with a thin bridge, Sibirsk. Mat. Zh., Volume 33 (1992) no. 4, pp. 80-96 (English transl.: Sib. Math. J., 33, 4, 1992, pp. 618-633)
[8] J.G. Huout, A. Munnier, On the motion and collisions of rigid bodies in an ideal fluid, Prépublications de l'IECN, 33 (2006)
[9] Amplification of stresses in thin ligaments, Int. J. Solids Structures, Volume 29 (1992), pp. 1883-1888
[10] Deformation of elastic bodies with thin ligaments, Prikl. Mat. Mekh., Volume 50 (1992) no. 5, pp. 52-65 (English transl.: J. Appl. Math. Mech., 56, 5, 1992, pp. 651-664)
Cited by Sources:
Comments - Policy