Comptes Rendus
A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials
Comptes Rendus. Mécanique, Volume 336 (2008) no. 3, pp. 320-328.

The present Note is devoted to the formulation of a micromechanics-based model of non-local anisotropic damage and its application to concrete materials and structures. We first formulate a local anisotropic unilateral damage model on the basis of a suitable homogenization scheme which takes into account interactions between penny-shaped microcracks as well as their spatial distribution. The damage surface is built by using an energy release rate-based criterion. Then a non-local extension of the model is proposed by replacing the local energy release-rate for each family of microcracks by its average over a characteristic volume V of the material centered at a given point. In order to demonstrate the efficiency of the non-local model in mesh-independent simulation of failure process in structures, some applications concerning failure of concrete materials and structures are presented.

La présente Note est dédiée à la formulation d'un modèle micromécanique non local d'endommagement anisotrope ainsi qu'à son application aux matériaux et structures en béton. Nous formulons d'abord un modèle local d'endommagement unilatéral anisotrope en se basant sur un schéma d'homogénéisation adapté qui prend en compte l'interaction entre les microfissures ainsi que leur distribution spatiale. La surface d'endommagement est construite à l'aide d'un critère basé sur le taux de restitution de l'énergie. Une extension non locale du modèle est ensuite proposée en remplaçant le taux de restitution de l'énergie local associée à chaque famille de microfissures par sa moyenne sur un volume caractéristique V du materiau centré au point matériel. Afin d'illustrer l'efficacité du modèle non local, en particulier l'indépendence de ces prédictions vis-à-vis du maillage, on présente quelques exemples concernant le processus de rupture de matériaux et structures en béton.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2007.10.010
Keywords: Damage, Homogenization, Non-local damage, Induced anisotropy, Crack interactions, Unilateral effect
Keywords: Endommagement, Homogénéisation, Endommagement non local, Anisotropie induite, Interaction entre fissures, Effets unilatéraux

Qi-zhi Zhu 1; Jian-fu Shao 1; Djimedo Kondo 1

1 Laboratoire de mécanique de Lille-UMR CNRS 8107, Université de sciences et technologies Lille, cité scientifique, boulevard Paul-Langevin, 59655 Villeneuve d'Ascq cedex, France
@article{CRMECA_2008__336_3_320_0,
     author = {Qi-zhi Zhu and Jian-fu Shao and Djimedo Kondo},
     title = {A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {320--328},
     publisher = {Elsevier},
     volume = {336},
     number = {3},
     year = {2008},
     doi = {10.1016/j.crme.2007.10.010},
     language = {en},
}
TY  - JOUR
AU  - Qi-zhi Zhu
AU  - Jian-fu Shao
AU  - Djimedo Kondo
TI  - A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 320
EP  - 328
VL  - 336
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2007.10.010
LA  - en
ID  - CRMECA_2008__336_3_320_0
ER  - 
%0 Journal Article
%A Qi-zhi Zhu
%A Jian-fu Shao
%A Djimedo Kondo
%T A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials
%J Comptes Rendus. Mécanique
%D 2008
%P 320-328
%V 336
%N 3
%I Elsevier
%R 10.1016/j.crme.2007.10.010
%G en
%F CRMECA_2008__336_3_320_0
Qi-zhi Zhu; Jian-fu Shao; Djimedo Kondo. A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials. Comptes Rendus. Mécanique, Volume 336 (2008) no. 3, pp. 320-328. doi : 10.1016/j.crme.2007.10.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.010/

[1] D. Krajcinovic Damage Mechanics, North-Holland, Amsterdam, The Netherlands, 1996

[2] S. Andrieux; Y. Bamberger; J.J. Marigo Un modèle de matériau microfissuré pour les roches et les bétons, Journal de Mécanique Théorique et Appliquée, Volume 5 (1986) no. 3, pp. 471-513

[3] L. Gambarotta; S. Lagomarsino A microcrak damage model for brittle materials, International Journal of Solids and Structures, Volume 30 (1993) no. 2, pp. 177-198

[4] V. Pensée; D. Kondo; L. Dormieux Micromechanical analysis of anisotropic damage in brittle materials, Journal of Engineering Mechanics, ASCE, Volume 128 (2002) no. 8, pp. 889-897

[5] Q.Z. Zhu, Applications des approches d'homogénéisation à la modélisation tridimensionnelle de l'endommagement des matériaux quasi fragiles : Formulations, validations et implémentations numériques, Ph.D. Thesis, University of Lille I, France, 2006 (in French)

[6] Z.P. Bazant Nonlocal damage theory based on micromechanics of crack interactions, Journal of Engineering Mechanics, ASCE, Volume 120 (1994), pp. 593-617

[7] W.J. Drugan; J.R. Willis A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, Volume 44 (1996), pp. 497-524

[8] W.J. Drugan Micromechanics-based variational estimates for a higher-order nonlocal constitutive equation and optimal choice of effective moduli for elastic composites, Journal of the Mechanics and Physics of Solids, Volume 48 (2000), pp. 1359-1387

[9] E. Lorentz; S. Andrieux Analysis of non-local models through energetic formulations, International Journal of Solids and Structures, Volume 40 (2003), pp. 2905-2936

[10] M. Gologanu; J.-B. Leblond; G. Perrin; J. Devaux Recent extensions of Gurson's model for porous ductile metals (P. Suquet, ed.), Continuum Micromechanics, Springer, 1997, pp. 61-130

[11] R. Desmorat; F. Gatuingt; F. Ragueneau Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials, Engineering Fracture Mechanics (2007), pp. 1539-1560

[12] P. Ponte-Castañeda; J.R. Willis The effect of spatial distribution on the behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, Volume 43 (1995), pp. 1919-1951

[13] K.J. Willam; E. Pramono; S. Sture Fundamental issues of smeared crack models (S.P. Shah; S.E. Swartz, eds.), SEM RILEM, Fracture of Concrete and Rock, Springer, New York, 1987, pp. 192-207

[14] V. Deudé; L. Dormieux; D. Kondo; V. Pensée Propriétés élastiques non linéaires d'un milieu mésofissuré, C. R. Mécanique, Volume 330 (2002), pp. 587-592

[15] B. Budiansky; J.R. O'Connel Elastic moduli of a cracked solid, International Journal of Solids and Structures, Volume 12 (1976), pp. 81-97

[16] S. Ghavamian; I. Carol; A. Delaplace Discussion over MECA projects results, Revue française de Génie Civil, Volume 7 (2003) no. 5, pp. 544-581 (Modèle de fissuration de béton)

[17] G. Pijaudier-Cabot; Z.P. Bazant Nonlocal damage theory, Journal of Engineering Mechanics, ASCE, Volume 113 (1987) no. 10, pp. 1512-1533

[18] M. Hassanzadeh, Behavior of fracture process zones in concrete influenced by simultaneously applied normal and shear displacements, Ph.D. Thesis, Lund Institute of Technology, Lund, 1991

[19] J.D. Eshelby The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceeding of the Royal Society of London, Series A, Volume 241 (1957), pp. 375-396

Cited by Sources:

Comments - Policy