[Homogénéisation des propriétés électromagnétiques des milieux périodiques fondée sur une base microstructurelle]
A general method for homogenization of the electromagnetic properties of a heterogeneous periodic medium is developed, based on its microstructure. This method is inspired by micromechanics (Nemat-Nasser and Hori, 1999). Contrary to other conventional techniques, commonly used in electromagnetism to calculate the overall properties of composites, this microstructurally-based method does not require an explicit numerical solution of the Maxwell equations. We define the macroscopic field quantities as volume averages of the spatially variable fields, taken over a representative volume element (RVE), consisting of a unit cell of the periodic medium (Hill, 1963; Willis, 1981; Hashin, 1983; Nemat-Nasser, 1986). The boundary conditions are based on the Bloch representation of wave propagation in the heterogeneous media. Instead of explicitly solving the Maxwell equations, these equations are directly used in the averaging scheme. This distinguishes our method from others, where usually a known point-wise solution is used to obtain the average field quantities. The resulting constitutive relations therefore may be used to directly estimate the response of any heterogeneous periodic assembly of material constituents of given geometry and properties.
On développe une méthode générale d'homogénéisation des propriétés électromagnétiques des milieux périodiques hétérogènes fondée sur une base microstructurelle. Cette méthode est inspirée de la micromécanique (Nemat-Nasser and Hori, 1999). Contrairement à d'autres techniques conventionnelles, couramment utilisées en électromagnétisme pour calculer les propriétés globales des composites, cette méthode à base microstructurelle ne nécessite pas de solution numérique explicite des équations de Maxwell. Nous définissons les champs macroscopiques comme des moyennes volumiques des champs spatialement variables sur un volume représentatif élémentaire (VRE), qui consiste en une cellule de base du milieu périodique (Hill, 1963 ; Willis, 1981 ; Hashin, 1983 ; Nemat-Nasser, 1986). Les conditions aux limites reposent sur la représentation de Bloch de la propagation d'ondes dans le milieu hétérogène. Au lieu de résoudre explicitement les équations de Maxwell, ces équations sont directement utilisées dans l'opération de moyenne. Ceci distingue notre méthode d'autres qui utilisent généralement une solution connue point par point pour obtenir les champs moyens. Les équations constitutives résultantes peuvent par conséquent être utilisées pour estimer directement la réponse d'un assemblage périodique hétérogène de constituants matériels de géométrie et de propriétés données.
Mots-clés : Mécanique des solides numérique, Milieux périodiques, Propriétés électromagnétiques
Alireza V. Amirkhizi 1 ; Sia Nemat-Nasser 1
@article{CRMECA_2008__336_1-2_24_0, author = {Alireza V. Amirkhizi and Sia Nemat-Nasser}, title = {Microstructurally-based homogenization of electromagnetic properties of periodic media}, journal = {Comptes Rendus. M\'ecanique}, pages = {24--33}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.10.012}, language = {en}, }
TY - JOUR AU - Alireza V. Amirkhizi AU - Sia Nemat-Nasser TI - Microstructurally-based homogenization of electromagnetic properties of periodic media JO - Comptes Rendus. Mécanique PY - 2008 SP - 24 EP - 33 VL - 336 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2007.10.012 LA - en ID - CRMECA_2008__336_1-2_24_0 ER -
Alireza V. Amirkhizi; Sia Nemat-Nasser. Microstructurally-based homogenization of electromagnetic properties of periodic media. Comptes Rendus. Mécanique, Duality, inverse problems and nonlinear problems in solid mechanics, Volume 336 (2008) no. 1-2, pp. 24-33. doi : 10.1016/j.crme.2007.10.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.012/
[1] Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht, The Netherlands, 1987
[2] Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier Science B.V., Amsterdam, 1999
[3] Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites, Int. J. Solids Struct., Volume 30 (1993), pp. 161-175
[4] On the micromechanics of fibrous piezoelectric composites, Mech. Mater., Volume 18 (1994), pp. 183-193
[5] On micromechanics of inelastic and piezoelectric composites (T. Tatsumi; E. Watanabe; T. Kambe, eds.), Theoretical and Applied Mechanics, Elsevier Science B.V., Amsterdam, 1997
[6] Further correspondence between plane piezoelectricity and generalized strain elasticity, Proc. Roy. Soc. London A, Volume 554 (1998), pp. 873-884
[7] Variational principles and operator equations for electromagnetic waves in inhomogeneous media, Wave Motion, Volume 6 (1984), pp. 127-139
[8] Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, Volume 11 (1963), pp. 357-372
[9] Variational and related methods for the overall properties of composites (C.S. Yih, ed.), Advances in Applied Mechanics, vol. 21, Academic Press, New York, 1981
[10] Analysis of composite materials—A survey, J. Appl. Mech., Volume 50 (1983), pp. 481-505
[11] Overall stresses and strains in solids with microstructure (J. Gittus; J. Zarka, eds.), Modeling Small Deformations of Polycrystals, Elsevier Applied Science, Amsterdam, 1986
[12] Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978
[13] Electromagnetic Mixing Formulas and Applications, Institute of Electrical Engineers, London, 1999
[14] The Theory of Composites, Cambridge University Press, Cambridge, UK, 2002
[15] Macroscopic Electromagnetism, Pergamon Press, Oxford, UK, 1973
[16] Photonic band structures, J. Mod. Opt., Volume 41 (1994), pp. 209-229
[17] Calculating photonic band structure, J. Phys.: Condens. Matter, Volume 8 (1996), pp. 1085-1108
[18] A.V. Amirkhizi, S. Nemat-Nasser, Numerical calculation of electromagnetic properties including chirality parameters for uniaxial bianisotropic media, Smart Mater. Struct. 17 (2008)
[19] Homogenization of metamaterials by field averaging, J. Opt. Soc. Am. B, Volume 23 (2006), pp. 391-403
[20] The Mathematica Book, Wolfram Media/Cambridge University Press, Champaign, IL/Cambridge, UK, 1999
[21] Ansoft, 2001. Ansfot HFSS 8.0 User Documentation. Ansoft Corporation, Pittsburgh, PA
[22] Structural composites with integrated electromagnetic functionality, Proc. SPIE, Volume 4698 (2002), pp. 237-245
[23] Colours in metal glasses and metal films, Philos. Trans. R. Soc. London A, Volume 203 (1904), pp. 385-420
[24] Classical Electrodynamics, John Wiley and Sons Inc., New York, 1999
[25] Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Boston, 1994
[26] S. Nemat-Nasser, A.V. Amirkhizi, Effective electromagnetic properties of periodic media, in: Progress in Electromagnetics Research Symposium PIERS 2002, July 1–5, 2002, Cambridge, MA
- The effect of electro-momentum coupling on unidirectional zero reflection in layered generalized Willis Metamaterials, Extreme Mechanics Letters, Volume 77 (2025), p. 102318 | DOI:10.1016/j.eml.2025.102318
- Dynamic homogenization of random elastodynamic metamaterials using space–time Fourier transform, International Journal of Solids and Structures, Volume 315 (2025), p. 113339 | DOI:10.1016/j.ijsolstr.2025.113339
- A novel multiscale model for micro-structured electromagnetic media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 480 (2024) no. 2303 | DOI:10.1098/rspa.2024.0495
- On two elastodynamic homogenization methods for periodic composites, Applied Mathematical Modelling, Volume 113 (2023), p. 109 | DOI:10.1016/j.apm.2022.08.030
- Overall dynamic properties of locally resonant viscoelastic layered media based on consistent field integration for oblique anti-plane shear waves, Mechanics of Materials, Volume 160 (2021), p. 103981 | DOI:10.1016/j.mechmat.2021.103981
- Use of loss limit approach to zero in scattering-based parameter retrieval of elastic micro-structured media, International Journal of Solids and Structures, Volume 200-201 (2020), p. 34 | DOI:10.1016/j.ijsolstr.2020.05.010
- Electrostatic and magnetostatic properties of random materials, Physical Review E, Volume 99 (2019) no. 2 | DOI:10.1103/physreve.99.022120
- Modulated phononic crystals: Non-reciprocal wave propagation and Willis materials, Journal of the Mechanics and Physics of Solids, Volume 101 (2017), p. 10 | DOI:10.1016/j.jmps.2017.01.010
- Homogenization of layered media based on scattering response and field integration, Mechanics of Materials, Volume 114 (2017), p. 76 | DOI:10.1016/j.mechmat.2017.06.008
- Elastic metamaterials and dynamic homogenization: a review, International Journal of Smart and Nano Materials, Volume 6 (2015) no. 1, p. 41 | DOI:10.1080/19475411.2015.1017779
- Willis elastodynamic homogenization theory revisited for periodic media, Journal of the Mechanics and Physics of Solids, Volume 77 (2015), p. 158 | DOI:10.1016/j.jmps.2014.12.011
- , 2014 12th International Conference on Actual Problems of Electronics Instrument Engineering (APEIE) (2014), p. 611 | DOI:10.1109/apeie.2014.7040758
- Effective Dynamic Constitutive Relations for 3-D Periodic Elastic Composites, MRS Proceedings, Volume 1508 (2013) | DOI:10.1557/opl.2013.486
- Overall dynamic properties of three-dimensional periodic elastic composites, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 468 (2012) no. 2137, p. 269 | DOI:10.1098/rspa.2011.0440
- Negative effective dynamic mass-density and stiffness: Micro-architecture and phononic transport in periodic composites, AIP Advances, Volume 1 (2011) no. 4 | DOI:10.1063/1.3675939
- Overall dynamic constitutive relations of layered elastic composites, Journal of the Mechanics and Physics of Solids, Volume 59 (2011) no. 10, p. 1953 | DOI:10.1016/j.jmps.2011.07.008
- Universal theorems for total energy of the dynamics of linearly elastic heterogeneous solids, Mechanics of Materials, Volume 43 (2011) no. 12, p. 913 | DOI:10.1016/j.mechmat.2011.06.011
- From photonic crystals to metamaterials: the bianisotropic response, New Journal of Physics, Volume 13 (2011) no. 7, p. 073041 | DOI:10.1088/1367-2630/13/7/073041
- Homogenization of periodic elastic composites and locally resonant sonic materials, Physical Review B, Volume 83 (2011) no. 10 | DOI:10.1103/physrevb.83.104103
- Exact effective relations for dynamics of a laminated body, Mechanics of Materials, Volume 41 (2009) no. 4, p. 385 | DOI:10.1016/j.mechmat.2009.01.010
Cité par 20 documents. Sources : Crossref
Commentaires - Politique