Comptes Rendus
Duality and symmetry lost in solid mechanics
Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 12-23.

Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables. It is shown that Duality is the right tool to re-establish the symmetry between equations and variables and to provide conservation laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically.

Published online:
DOI: 10.1016/j.crme.2007.11.018
Keywords: Conservation laws, Duality, Symmetry loss, Inverse problem

Huy Duong Bui 1, 2

1 Laboratory of Solid Mechanics, Department of Mechanics, École polytechnique, 91128 Palaiseau cedex, France
2 LAMSID/CNRS, Électricite de France, 92141 Clamart cedex, France
@article{CRMECA_2008__336_1-2_12_0,
     author = {Huy Duong Bui},
     title = {Duality and symmetry lost in solid mechanics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {12--23},
     publisher = {Elsevier},
     volume = {336},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crme.2007.11.018},
     language = {en},
}
TY  - JOUR
AU  - Huy Duong Bui
TI  - Duality and symmetry lost in solid mechanics
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 12
EP  - 23
VL  - 336
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2007.11.018
LA  - en
ID  - CRMECA_2008__336_1-2_12_0
ER  - 
%0 Journal Article
%A Huy Duong Bui
%T Duality and symmetry lost in solid mechanics
%J Comptes Rendus. Mécanique
%D 2008
%P 12-23
%V 336
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2007.11.018
%G en
%F CRMECA_2008__336_1-2_12_0
Huy Duong Bui. Duality and symmetry lost in solid mechanics. Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 12-23. doi : 10.1016/j.crme.2007.11.018. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.018/

[1] P. Germain The method of virtual power in continuum mechanics. Part II (J.J.D. Domingos et al., eds.), Applications to Continuum Thermodynamics, J. Wiley, New York, 1973, pp. 317-333

[2] L. Schwartz Théorie des distributions, Hermann, Paris, 1978

[3] P. Germain Duality and convection in continuum mechanics (G. Fichera, ed.), Trends in Applications to Mechanics, Pitman, London, 1978, pp. 107-128

[4] E. Tonti On the formal structure of physical theories, Cooperative Library Instituto di Polytechnico di Milano, Milano, 1975

[5] Ladeveze, Comparison of models of continuous media (in French), PhD Thesis, Univ. of Paris VI, 1975

[6] H.D. Bui Comptes Rendus Acad. Sciences, Paris II, 311 (1990), p. 7

[7] Q.S. Nguyen; H.D. Bui Sur les matéraux à écrouissage positif ou négatif, J. Mécanique, Volume 13 (1974) no. 2, pp. 321-342

[8] H.D. Bui On the variational boundary integral equations in elastodynamics with the use of conjugate functions, J. Elasticity, Volume 28 (1992), p. 247

[9] H.D. Bui Comptes Rendus Acad. Sciences, 265 (1967), pp. 862-865

[10] H.D. Bui Detection de fissure par une méthode géométrique (J. Horowitch; J.L. Lions, eds.), A propos des grands Systèmes des Sciences et de la Technologie, Masson, Paris, 1993

[11] E. Lorentz; S. Andrieux Inter. J. Solids Struct., 40 (2003) no. 12, pp. 2905-2936

[12] H.D. Bui; A. Constantinescu; H. Maigre The reciprocity gap functional for identifying defects and cracks (Z. Mroz; G.E. Stavroulakis, eds.), Parameter Identification of Materials and Structures, CISM Course and Lecture, vol. 469, Springer, Wien, New York, 2005

[13] J.R. Rice Mathematical analysis in the mechanics of fracture (H. Liebowitz, ed.), Fracture, Academic Press, 1968, p. 191

[14] H.D. Bui Dual path-independent integrals in the boundary-value problems of cracks, Eng. Fracture Mech., Volume 6 (1974), pp. 287-296

[15] H.D. Bui, Stress and crack displacement intensity factors in elastodynamics, in: Proc. 4th Int. Conf. Fract., vol. 3, Waterloo, 1977, p. 91

[16] Fundamentals of Deformation and Fracture (B.A. Bilby; K.J. Miller; J.R. Willis, eds.), Cambridge University Press, 1984

[17] D.C. Fletcher Conservation laws in linear elastodynamics, Arch. Rat. Mech. Anal., Volume 60 (1976), p. 329

[18] H.D. Bui; H. Maigre Extraction of stress intensity factors from global mechanical quantities, C. R. Acad. Sci. Paris (II), Volume 306 (1988), p. 1213

[19] B. Halphen; Q.S. Nguyen Sur les matériaux standards généralisés, J. Mécanique, Volume 14 (1975), p. 39

[20] H.D. Bui et al. Comptes Rendus Acad. Sci. Paris, 289 (1979), pp. 211-214

[21] H.D. Bui, Dissipation of energy in plasticity. Cahier Groupe Français de Rhéologie, 1, 1965, p. 15

[22] J. Mandel, Energie élastique et travail dissipé dans les modèles rhéologiques. Cahier Groupe Français de Rhéologie, 1, 1965, p. 1

[23] S. Andrieux; A. Ben Abda Identification de fissures planes par une donnée de bord unique: un procédé direct de localisation et d'identification, C. R. Acad. Sci. Paris (I), Volume 315 (1992), pp. 1323-1328

[24] S. Andrieux; H.D. Bui; A. Ben Abda Reciprocity and crack identification, Inverse Problems, Volume 15 (1999), pp. 59-65

[25] A. Ben Abda; H.D. Bui Planar cracks identification for the transient heat equation, Inverse and Ill-Posed Problems, Volume 11 (2003) no. 1, pp. 67-86

[26] H.D. Bui; A. Constantinescu; H. Maigre Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded solid, C. R. Acad. Sci. Paris, Volume 327 (1999) no. II, pp. 971-976

[27] H.D. Bui; A. Constantinescu; H. Maigre An exact inversion formula for determining a planar fault from boundary measurements, Inverse Ill-Posed Problems, Volume 13 (2005) no. 6, pp. 553-565

[28] H.D. Bui Fracture Mechanics: Inverse Problems and Solutions, Springer, 2006

[29] S. Das; P. Suhadolc On the inverse problem for earthquake rupture: The Hasskel-type source model, J. Geophys. Res., Volume 101 (1996) no. B3, pp. 5725-5738

[30] J.D. Achenbach; Z.P. Bazant Elastodynamic near-tip stress and displacement fields for rapidly propagating cracks in orthotropic materials, J. Appl. Mech., Volume 97 (1972), p. 183

[31] S. Andrieux; A. Ben Abda Identification of planar cracks by complete overdetermined data inversion formulae, Inverse Problems, Volume 12 (1996), pp. 553-563

[32] H.D. Bui, A path-independent integral for mixed modes of fracture in linear thermo-elasticity, in: IUTAM Symposium on Fundamental of Deformation and Fracture, Sheffield, p. 597, April 1984

[33] H.D. Bui; H. Maigre; D. Rittel A new approach to the experimental determination of the dynamic stress intensity factors, Int. J. Solids & Struct., Volume 29 (1992), pp. 2881-2895

[34] H.D. Bui Inverse Problems in the Mechanics of Materials: An Introduction, CRC Press, Boca Raton, 1994

Cited by Sources:

Comments - Policy