In this article a comparison between two non-linear finite element approaches for the numerical estimation of the ultimate failure load of masonry arches is presented. According to the first model, the geometry of the arch is divided into a number of unilateral contact interfaces which simulate potential cracks. Opening or sliding for some of the interfaces indicates crack initiation. The second model uses two-dimensional finite elements for the simulation of the arch. When tensile stresses appear, upon an adaptive stepwise procedure, the corresponding elements are replaced by unilateral contact elements which represent cracks. In both models the fill over the arch, that could strongly affect the collapse behaviour increasing the bridge load carrying capacity, is taken into account. Moreover, the ultimate load and the collapse mechanism have been calculated by using a path-following (load incrementation) technique. Both models are developed and applied on a real scale masonry arch; results are comparable with both the experimental collapse mechanism and the ultimate load failure.
Dans cet article, on présente une comparaison entre deux approches par éléments finis non-linéaires permettant d'estimer numériquement la charge ultime de ruine d'arches en maçonnerie. Dans le premier modèle, la géométrie de l'arche est divisée en un certain nombre d'interfaces de contact unilatéral qui simulent des fissures potentielles. L'ouverture ou le glissement sur certains de ces interfaces indiquent une initiation de fissure. Le second modèle utilise des éléments finis bidimensionnels pour la simulation de l'arche. Quand des contraintes de traction apparaissent, les éléments correspondants sont remplacés, suivant une procédure pas-à-pas adaptative, par des éléments de contact unilatéral qui représentent des fissures. Dans les deux modèles, on prend en compte le remplissage sur l'arche, qui peut affecter considérablement le comportement à la rupture en augmentant la capacité portante du pont. De plus, la charge limite et le mécanisme de ruine ont été calculés en utilisant une technique pas-à-pas tenant compte du trajet de chargement. Les deux modèles sont développés et appliqués à une arche en maçonnerie en vraie grandeur ; les résultats reproduisent bien tant le mécanisme de ruine expérimental et la charge limite de rupture.
Mots-clés : Solides et structures, Arche en maçonnerie, Contact unilatéral, Interaction arche–remplissage, Analyse-limite, Charge ultime de ruine
Michele Betti 1; Georgios A. Drosopoulos 2; Georgios E. Stavroulakis 3, 4
@article{CRMECA_2008__336_1-2_42_0, author = {Michele Betti and Georgios A. Drosopoulos and Georgios E. Stavroulakis}, title = {Two non-linear finite element models developed for the assessment of failure of masonry arches}, journal = {Comptes Rendus. M\'ecanique}, pages = {42--53}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.10.014}, language = {en}, }
TY - JOUR AU - Michele Betti AU - Georgios A. Drosopoulos AU - Georgios E. Stavroulakis TI - Two non-linear finite element models developed for the assessment of failure of masonry arches JO - Comptes Rendus. Mécanique PY - 2008 SP - 42 EP - 53 VL - 336 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2007.10.014 LA - en ID - CRMECA_2008__336_1-2_42_0 ER -
%0 Journal Article %A Michele Betti %A Georgios A. Drosopoulos %A Georgios E. Stavroulakis %T Two non-linear finite element models developed for the assessment of failure of masonry arches %J Comptes Rendus. Mécanique %D 2008 %P 42-53 %V 336 %N 1-2 %I Elsevier %R 10.1016/j.crme.2007.10.014 %G en %F CRMECA_2008__336_1-2_42_0
Michele Betti; Georgios A. Drosopoulos; Georgios E. Stavroulakis. Two non-linear finite element models developed for the assessment of failure of masonry arches. Comptes Rendus. Mécanique, Duality, inverse problems and nonlinear problems in solid mechanics, Volume 336 (2008) no. 1-2, pp. 42-53. doi : 10.1016/j.crme.2007.10.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.014/
[1] A. Brencich, R. Morbiducci, Masonry arches: Historical rules and modern mechanics, in: Proceeding of Structural Analysis of Historical Constructions, New Delhi, 2006, pp. 243–250
[2] Military Engineering Experimental Establishment (MEXE), Military load classification of civil bridges, Christchurch, Hampshire, UK, 1963
[3] An experimental study of the voussoir arch, J. Institut. Civil Eng., Volume 10 (1939), pp. 383-404
[4] The approximate estimation of safe loads on masonry bridges, Institut. Civil Eng., Volume 1 (1948), p. 365
[5] Modifying the mechanism method of masonry arch bridge analysis, Construct. Building Mater., Volume 18 (2004) no. 2, pp. 91-97
[6] Load Tests to Collapse on Two Arch Bridges at Preston, Shropshire and Prestwood, Staffordshire, TRL, Crowthorne, England, 1987
[7] J. Page, Masonry arch bridges. TRL state of the art review, Department of Transport, TRL research report, Crowthorne, England, 1993
[8] The Masonry Arch, Ellis Horwood Series in Engineering Science, Ellis Horwood, England, 1982
[9] Application of the mechanism analysis to masonry arches, The Struct. Eng., Volume 66 (1988), pp. 77-84
[10] P. Faccio, P. Foraboschi, E. Siviero, Load carrying capacity of masonry arch bridges, in: Proceedings of the First International Conference on Arch Bridges, Bolton, GB, 1995, pp. 449–458
[11] Longitudinal and transverse effects in masonry arch assessment, Construct. Building Mater., Volume 15 (2001), pp. 51-60
[12] Rigid-block analysis of masonry structures, The Struct. Eng., Volume 72 (1994), pp. 356-360
[13] Calcul à la rupture et analyse limite, Presses de l'Ecole Nationale des Ponts et Chaussees, Paris, 1983
[14] Three-dimensional limit analysis of rigid blocks assemblages. Part I: Torsion failure on frictional interfaces and limit analysis formulation, Int. J. Solids Struct., Volume 42 (2005), pp. 5140-5160
[15] Three-dimensional limit analysis of rigid blocks assemblages. Part II: Load-path following solution procedure and validation, Int. J. Solids Struct., Volume 42 (2005), pp. 5161-5180
[16] A Finite Element Computer Program for the Analysis of Masonry Arches, TRL, Crowthorne, England, 1984
[17] Finite Element and Mechanism Methods for the Analysis of Masonry and Brickwork Arches, TRL, Crowthorne, England, 1985
[18] Interface model applied to fracture of masonry structures, ASCE J. Struct. Engrg., Volume 120 (1994), pp. 63-80
[19] Capacity of masonry arches and spatial structures, ASCE J. Struct. Engrg., Volume 124 (1998), pp. 653-663
[20] Collapse analysis of masonry bridges taking into account arch–fill interaction, Engrg. Struct., Volume 27 (2005), pp. 605-615
[21] Computational framework for discontinuous modelling of masonry arch bridges, Computers & Structures, Volume 73 (2001) no. 19, pp. 1821-1830
[22] Les inéquations en mécanique et en physique, Dunod, Paris, 1972
[23] Inequality Problems in Mechanics and Applications, Convex and Nonconvex Energy Functions, Birkhäuser-Verlag, Stuttgart, 1985
[24] Nonconvex Optimization in Mechanics. Smooth and Nonsmooth Algorithms, Heuristics and Engineering Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998
[25] Fall of a temple: Theory of contact applied to masonry joints, ASCE J. Struct. Engrg., Volume 119 (1993) no. 3, pp. 687-697
[26] Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints, Int. J. Mech. Sci., Volume 43 (2001), pp. 209-224
[27] On the rigid body displacements and rotations in unilateral contact problems and applications, Computers & Structures, Volume 40 (1991), pp. 599-614
[28] Computational Mechanics for Heritage Structures, WIT Press, Southampton, 2006
[29] Limit analysis of a single span masonry bridge with unilateral frictional contact interfaces, Engrg. Struct., Volume 28 (2006), pp. 1864-1873
[30] K.D.S. Towler, F. Sawko, Limit state behaviour of brickwork arches, in: Proceedings 6th International Brick Masonry Conference, Rome, 1982
[31] Cracking and failure analysis of masonry arch bridges, ASCE J. Struct. Engrg., Volume 117 (1991), pp. 1641-1659
[32] Elastic plastic stability of jointed masonry arches, Engrg. Struct., Volume 19 (1997), pp. 345-351
[33] Three dimensional modelling and full-scale testing of stone arch bridge, Computer & Structures, Volume 79 (2001), pp. 2645-2662
[34] Y.C. Loo, Collapse load analysis of masonry arch bridges, in: Proceedings of the First International Conference on Arch Bridges, Bolton, GB, 1995, pp. 167–174
[35] L'utilizzo del codice ad elementi finiti ANSYS per l'analisi strutturale di edifici monumentali in muratura, Anal. Calcolo VI, Volume 21 (2005), pp. 27-31 (in Italian)
Cited by Sources:
Comments - Policy