Analytical and numerical approaches are used to solve an axisymmetric crack problem with a refined Barenblatt–Dugdale approach. The analytical method utilizes potential theory in classical linear elasticity, where a suitable potential is selected for the treatment of the mixed boundary problem. The closed-form solution for the problem with constant pressure applied near the tip of a penny-shaped crack is studied to illustrate the methodology of the analysis and also to provide a fundamental solution for the numerical approach. Taking advantage of the superposition principle, an exact solution is derived to predict the extent of the plastic zone where a Tresca yield condition is imposed, which also provides a useful benchmark for the numerical study presented in the second part. For an axisymmetric crack, the numerical discretization is required only in the radial direction, which renders the programming work efficient. Through an iterative scheme, the numerical method is able to determine the size of the crack tip plasticity, which is governed by the nonlinear von Mises criterion. The relationships between the applied load and the length of the plastic zone are compared for three different yielding conditions.
On utilise des approches analytiques et numériques pour résoudre un problème de fissure axisymétrique avec un modèle de Barenblatt–Dugdale raffiné. La méthode analytique utilise la théorie du potentiel en élasticité linéaire classique, un potentiel approprié étant choisi pour le traitement du problème aux limites mixte. La solution complète du problème comportant une pression uniforme appliquée au voisinage du front d'une fissure en forme de pièce de monnaie est étudiée afin d'illustrer la méthodologie de l'analyse et également fournir une solution de référence pour l'approche numérique. Grâce au principe de superposition, une solution exacte est obtenue afin de prédire l'étendue de la zone plastique où une condition de Tresca est imposée, ce qui fournit aussi un test utile pour qualifier l'étude numérique présentée dans la seconde partie. Pour une fissure axisymétrique, seule une discrétisation dans la direction radiale est requise, ce qui permet une programmation efficace. Grâce à une procédure itérative, la méthode numérique est capable d'évaluer la taille de la zone plastique, qui est déterminée par le critère non-linéaire de von Mises. Les relations entre le chargement appliqué et la taille de la zone plastique sont comparées pour trois conditions d'écoulement différentes.
Mot clés : Fissure en forme de pièce de monnaie, Plasticité en pointe de fissure, Approche de Dugdale, Critère de Tresca, Critère de von Mises
Sumitra Chaiyat 1; Xiaoqing Jin 2; Leon M. Keer 2; Kraiwood Kiattikomol 1
@article{CRMECA_2008__336_1-2_54_0, author = {Sumitra Chaiyat and Xiaoqing Jin and Leon M. Keer and Kraiwood Kiattikomol}, title = {Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack}, journal = {Comptes Rendus. M\'ecanique}, pages = {54--68}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.10.015}, language = {en}, }
TY - JOUR AU - Sumitra Chaiyat AU - Xiaoqing Jin AU - Leon M. Keer AU - Kraiwood Kiattikomol TI - Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack JO - Comptes Rendus. Mécanique PY - 2008 SP - 54 EP - 68 VL - 336 IS - 1-2 PB - Elsevier DO - 10.1016/j.crme.2007.10.015 LA - en ID - CRMECA_2008__336_1-2_54_0 ER -
%0 Journal Article %A Sumitra Chaiyat %A Xiaoqing Jin %A Leon M. Keer %A Kraiwood Kiattikomol %T Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack %J Comptes Rendus. Mécanique %D 2008 %P 54-68 %V 336 %N 1-2 %I Elsevier %R 10.1016/j.crme.2007.10.015 %G en %F CRMECA_2008__336_1-2_54_0
Sumitra Chaiyat; Xiaoqing Jin; Leon M. Keer; Kraiwood Kiattikomol. Analytical and numerical evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped crack. Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 54-68. doi : 10.1016/j.crme.2007.10.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.10.015/
[1] A note on low cycle fatigue laws, Journal of Materials, Volume 6 (1971) no. 2, pp. 388-402
[2] Rate of growth of fatigue cracks calculated from theory of infinitesimal dislocations distributed on a plane, International Journal of Fracture Mechanics, Volume 2 (1966) no. 2, pp. 460-467
[3] A mechanical model of fatigue crack propagation, Proceedings of the Second International Conference on Fracture, Chapman & Hall, Brighton, 1969, pp. 790-802
[4] The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, vol. 7, Academic Press, 1962, pp. 55-129
[5] Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, Volume 8 (1960) no. 2, pp. 100-104
[6] The distribution of stress in the neighbourhood of a crack in an elastic solid, Proceedings of the Royal Society of London A, Volume 187 (1946), pp. 229-260
[7] The penny-shaped crack problem for a finitely deformed incompressible elastic solid, International Journal of Fracture, Volume 16 (1980) no. 4, pp. 327-333
[8] Stress intensity factors for penny-shaped cracks, part I—infinite solid, Journal of Applied Mechanics, Volume 34 (1967) no. 4, pp. 947-952
[9] Penny-shaped crack in a transversely isotropic plate of finite thickness, International Journal of Fracture, Volume 20 (1982) no. 2, pp. 81-89
[10] Elastic t-stress solutions for penny-shaped cracks under tension and bending, Engineering Fracture Mechanics, Volume 71 (2004) no. 16–17, pp. 2283-2298
[11] Solution of axisymmetric crack problems using distributed dislocation ring dipoles, Journal of Strain Analysis for Engineering Design, Volume 35 (2000) no. 5, pp. 373-382
[12] Axisymmetrical stress-distribution in the vicinity of an external crack under general surface loadings, International Journal of Solids and Structures, Volume 30 (1993) no. 18, pp. 2567-2586
[13] Theoretical Elasticity, Oxford, Clarendon Press, 1954
[14] Some axially symmetric stress distributions in elastic solids containing penny-shaped cracks. I. Cracks in an infinite solid and a thick plate, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Volume 266 (1962) no. 1326, pp. 359-386
[15] The solution of elasticity problems for the half-space by the method of Green and Collins, Applied Scientific Research, Volume 40 (1983) no. 2, pp. 135-157
[16] A class of non-symmetrical punch and crack problems, Quarterly Journal of Mechanics and Applied Mathematics, Volume 17 (1964) no. 4, pp. 423-436
[17] Stress distribution at the edge of an equilibrium crack, Journal of the Mechanics and Physics of Solids, Volume 12 (1964) no. 3, pp. 149-163
[18] Stationary crack and continuous distributions of dislocations, Proceedings of the First International Conference on Fracture, vol. 1, The Japanese Society for Strength and Fracture of Materials, Sendai, Japan, 1965, pp. 99-115
[19] Three-dimensional cracks with Dugdale-type plastic zones, International Journal of Fracture, Volume 106 (2000) no. 4, pp. 291-309
[20] About the penny-shaped Dugdale crack under shear and triaxial loading, ICF, Volume 7 (1988), pp. 2289-2299
[21] Mixed-mode fatigue-crack propagation of penny-shaped cracks, Journal of Engineering Materials and Technology—Transactions of the ASME, Volume 115 (1993) no. 4, pp. 365-372
[22] A penny-shaped cohesive crack model for material damage, Theoretical and Applied Fracture Mechanics, Volume 42 (2004) no. 3, pp. 303-316
[23] Contact, Adhesion, and Rupture of Elastic Solids, Springer, Berlin, New York, 2000
[24] Analytical solutions for crack tip plastic zone shape using the von Mises and Tresca yield criteria: Effects of crack mode and stress condition, Journal of Mechanics, Volume 20 (2004) no. 3, pp. 199-210
Cited by Sources:
Comments - Policy