A solitary wave, resembling a soliton wave, is observed when analyzing the linear problem of polarized shear (SH) surface acoustic waves propagating in elastic orthotropic two-layered traction-free plates. The analysis is performed by applying a special complex formalism and the Modified Transfer Matrix (MTM) method. Conditions for the existence of solitary SH waves are obtained. Analytical expressions for the phase speed of the solitary wave are derived.
Une onde isolée ressemblant à un soliton est décrite mathématiquement en analysant les problèmes linéaires pour des ondes de cisaillement de surface se propageant dans les plaques élastiques, anisotropes et stratifiées. Le modèle mathématique est basé sur un formalisme particulier dans un espace complexe et sur la méthode de la matrice modifiée de transfert (MTM). Les conditions d'existence des ondes isolées sont obtenues. La vitesse de phase de ces ondes est décrite par des solutions analytiques.
Mots-clés : Ondes, Ondes SH, Onde de cisaillement, Onde de surface, Soliton, Onde isolée
Irini Djeran-Maigre 1; Sergey Kuznetsov 2
@article{CRMECA_2008__336_1-2_102_0, author = {Irini Djeran-Maigre and Sergey Kuznetsov}, title = {Solitary {SH} waves in two-layered traction-free plates}, journal = {Comptes Rendus. M\'ecanique}, pages = {102--107}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.11.001}, language = {en}, }
Irini Djeran-Maigre; Sergey Kuznetsov. Solitary SH waves in two-layered traction-free plates. Comptes Rendus. Mécanique, Duality, inverse problems and nonlinear problems in solid mechanics, Volume 336 (2008) no. 1-2, pp. 102-107. doi : 10.1016/j.crme.2007.11.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.001/
[1] J. Scott Russell, Report on waves, in: Fourteenth Meeting of the British Association for the Advancement of Science, York, 1844 (London 1845), pp. 311–390
[2] The origins of water wave theory, Ann. Rev. Fluid Mech., Volume 36 (2004), pp. 1-28
[3] On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., Volume 39 (1895), pp. 422-443
[4] Integrals of nonlinear evolution equations and solitary waves, Comm. Pure Appl. Math., Volume 21 (1968), pp. 467-490
[5] The Korteweg–de Vries equation, a historical essay, J. Fluid Mech., Volume 106 (1981), pp. 131-147
[6] Some Problems of Geodynamics, Cambridge University Press, London, 1911
[7] Subsonic Lamb waves in anisotropic plates, Quart. Appl. Math., Volume 60 (2002), pp. 577-587
[8] Love waves in stratified monoclinic media, Quart. Appl. Math., Volume 62 (2004), pp. 749-766
[9] Surface waves on a half-space with cubic symmetry, Int. J. Comp. Civil & Struct. Eng., Volume 2 (2005), pp. 21-27
[10] SH-waves in laminated plates, Quart. Appl. Math., Volume 64 (2006), pp. 153-165
[11] Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces, Bull. Earthquake Res. Inst. Tokyo, Volume 3 (1927), pp. 1-18
[12] The Linear Theory of Elasticity, Handbuch Der Physik, vol. VIa/2, Springer, 1973
Cited by Sources:
Comments - Policy