An approach to solving problems of the interaction of axisymmetric elastic bodies in the presence of adhesion is developed. The different natures of adhesion, i.e. capillary adhesion, or molecular adhesion described by the Lennard-Jones potential are examined. The effect of additional loading of the interacting bodies outside the contact zone is also investigated. The approach is based on the representation of the pressure outside the contact zone arising from adhesion by a step function. The analytical solution is obtained and is used to analyze the influence of the form of the adhesion interaction potential, of the surface energy of interacting bodies or the films covering the bodies, their shapes (parabolic, higher power exponential function), volume of liquid in the meniscus, density of contact spots, of elastic modulus and the Poisson ratio on the characteristics of the interaction of the bodies in the presence of adhesion.
Une approche de résolution des problèmes d'interaction de corps élastiques axisymétriques en présence d'adhésion est développée. Les différents types d'adhésion, capillaire ou moléculaire décrite par le potentiel de Lennard-Jones, sont examinés. L'effet d'un chargement additionnel des corps en interaction, exercé en dehors de la zone de contact, est également étudié. L'approche repose sur la représentation de la pression hors de la zone de contact due à l'adhésion par une fonction en échelon. Une solution analytique est obtenue et utilisée pour analyser l'influence de la forme du potentiel d'interaction décrivant l'adhésion, de l'énergie de surface des corps en interaction ou des films couvrants, de leur forme (parabolique, exponentielle d'ordre plus élevé), du volume de liquide dans le ménisque, de la densité de points de contact, et du module d'élasticité et du coefficient de Poisson, sur les caractéristiques de l'interaction des corps en présence d'adhésion.
Mots-clés : Interaction de contact, Adhésion capillaire, Adhésion moléculaire
Irina Goryacheva 1; Yulya Makhovskaya 1
@article{CRMECA_2008__336_1-2_118_0, author = {Irina Goryacheva and Yulya Makhovskaya}, title = {Adhesion effects in contact interaction of solids}, journal = {Comptes Rendus. M\'ecanique}, pages = {118--125}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.11.003}, language = {en}, }
Irina Goryacheva; Yulya Makhovskaya. Adhesion effects in contact interaction of solids. Comptes Rendus. Mécanique, Duality, inverse problems and nonlinear problems in solid mechanics, Volume 336 (2008) no. 1-2, pp. 118-125. doi : 10.1016/j.crme.2007.11.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.003/
[1] Adhesion of elastic spheres, Proc. Roy. Soc. London Ser. A, Volume 453 (1997) no. 1961, pp. 1277-1297
[2] Surface forces and surface interactions, J. Colloid Interface Sci., Volume 58 (1977), pp. 2-13
[3] Adhesion of spheres: The JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci., Volume 150 (1991), pp. 243-269
[4] Fracture mechanics and adherence of viscoelastic bodies, J. Phys. D: Appl. Phys., Volume 11 (1978), pp. 1989-2033
[5] An alternative to the Maugis model of adhesion between elastic spheres, J. Phys. D: Appl. Phys., Volume 31 (1998) no. 22, pp. 3279-3290
[6] J. Colloid Interface Sci., 200 (1998), pp. 7-18
[7] Contact Problems of Theory of Elasticity and Viscoelasticity, Nauka, Moscow, 1980 (303 pp)
[8] Contact Mechanics, Cambridge University Press, 1985
[9] Capillary adhesion in contact of elastic bodies, Appl. Math. Mech., Volume 63 (1999) no. 1, pp. 128-137
[10] The combined effect of capillarity and elasticity in contact interaction, Tribology Internat., Volume 32 (1999), pp. 507-515
[11] Adhesion interaction of elastic bodies, Appl. Math. Mech., Volume 65 (2001) no. 2, pp. 279-289
[12] Periodic contact problem for an elastic half-space, Appl. Math. Mech., Volume 62 (1998) no. 6, pp. 1036-1044
[13] Discrete contact of elastic bodies in the presence of adhesion, Izv. RAS, Mech. Solid, Volume 2 (2003), pp. 49-60
Cited by Sources:
Comments - Policy