In this Note eigenspectra and orders of singularity of the stress field near a mode I crack tip in a power-law material are discussed. The perturbation theory technique is employed to pose the required asymptotic solution. The whole set of eigenvalues is obtained. It is shown that the eigenvalues of the nonlinear problem are fully determined by the corresponding eigenvalues of the linear problem and by the hardening exponent.
Dans cette Note, on détermine le spectre de valeurs propres du champ de contrainte asymptotique au voisinage de l'extrémité d'une fissure, dans le cas d'un matériau à comportement non linéaire. Toutes les valeurs propres sont obtenues par une méthode de perturbation. L'analyse indique que la valeur propre du problème non linéaire est complètement déterminée par la valeur propre du problème linéaire et le coefficient de consolidation plastique.
Mots-clés : Rupture, Analyse asymptotique, Problème non linéaire aux valeurs propres
Larisa Stepanova 1
@article{CRMECA_2008__336_1-2_232_0, author = {Larisa Stepanova}, title = {Eigenspectra and orders of stress singularity at a mode {I} crack tip for a power-law medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {232--237}, publisher = {Elsevier}, volume = {336}, number = {1-2}, year = {2008}, doi = {10.1016/j.crme.2007.11.014}, language = {en}, }
Larisa Stepanova. Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium. Comptes Rendus. Mécanique, Duality, inverse problems and nonlinear problems in solid mechanics, Volume 336 (2008) no. 1-2, pp. 232-237. doi : 10.1016/j.crme.2007.11.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.014/
[1] Singular behavior at the end of tensile crack in a hardening material, J. Mech. Phys. Solids, Volume 16 (1968), pp. 13-31
[2] Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, Volume 16 (1968), pp. 1-12
[3] Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear, Int. J. Fracture, Volume 69 (1994), pp. 1-26
[4] An algorithm and a computer program for the three-term asymp totic expansion of elastic–plastic crack tip stress and displacement fields, Engrg. Fracture Mech., Volume 50 (1995), pp. 65-83
[5] On higher-order crack-tip fields in creeping solids, Trans. ASME, Volume 67 (2000), pp. 372-382
[6] The role of higher order eigenfields in elastic–plastic cracks, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2789-2818
[7] Why K? High order singularities and small scale yielding, Int. J. Fracture, Volume 72 (1995), pp. 97-120
[8] Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium, Int. J. Fracture, Volume 92 (1998), pp. 55-70
[9] Higher order fields at crack and notch tips in power-law materials under longitudinal shear, Arch. Appl. Mech., Volume 64 (1994), pp. 509-518
[10] Introduction to Perturbation Techniques, Willey, New York, 1981
[11] Asymptotic behaviour of the far stress field in the problem of crack growth in damaged medium under creep conditions, J. Appl. Mech. Techn. Phys., Volume 46 (2005), pp. 570-580
Cited by Sources:
Comments - Policy