Comptes Rendus
Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium
Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 232-237.

In this Note eigenspectra and orders of singularity of the stress field near a mode I crack tip in a power-law material are discussed. The perturbation theory technique is employed to pose the required asymptotic solution. The whole set of eigenvalues is obtained. It is shown that the eigenvalues of the nonlinear problem are fully determined by the corresponding eigenvalues of the linear problem and by the hardening exponent.

Dans cette Note, on détermine le spectre de valeurs propres du champ de contrainte asymptotique au voisinage de l'extrémité d'une fissure, dans le cas d'un matériau à comportement non linéaire. Toutes les valeurs propres sont obtenues par une méthode de perturbation. L'analyse indique que la valeur propre du problème non linéaire est complètement déterminée par la valeur propre du problème linéaire et le coefficient de consolidation plastique.

Published online:
DOI: 10.1016/j.crme.2007.11.014
Keywords: Rupture, Fracture mechanics, Asymptotic analysis, Nonlinear eigenvalue problem
Mot clés : Rupture, Analyse asymptotique, Problème non linéaire aux valeurs propres

Larisa Stepanova 1

1 Department of Mathematical Modelling in Mechanics, Samara State University, Akad. Pavlov str., 1, 443011, Samara, Russia
@article{CRMECA_2008__336_1-2_232_0,
     author = {Larisa Stepanova},
     title = {Eigenspectra and orders of stress singularity at a mode {I} crack tip for a power-law medium},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {232--237},
     publisher = {Elsevier},
     volume = {336},
     number = {1-2},
     year = {2008},
     doi = {10.1016/j.crme.2007.11.014},
     language = {en},
}
TY  - JOUR
AU  - Larisa Stepanova
TI  - Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium
JO  - Comptes Rendus. Mécanique
PY  - 2008
SP  - 232
EP  - 237
VL  - 336
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crme.2007.11.014
LA  - en
ID  - CRMECA_2008__336_1-2_232_0
ER  - 
%0 Journal Article
%A Larisa Stepanova
%T Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium
%J Comptes Rendus. Mécanique
%D 2008
%P 232-237
%V 336
%N 1-2
%I Elsevier
%R 10.1016/j.crme.2007.11.014
%G en
%F CRMECA_2008__336_1-2_232_0
Larisa Stepanova. Eigenspectra and orders of stress singularity at a mode I crack tip for a power-law medium. Comptes Rendus. Mécanique, Volume 336 (2008) no. 1-2, pp. 232-237. doi : 10.1016/j.crme.2007.11.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.11.014/

[1] J.W. Hutchinson Singular behavior at the end of tensile crack in a hardening material, J. Mech. Phys. Solids, Volume 16 (1968), pp. 13-31

[2] J.R. Rice; G.F. Rosengren Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, Volume 16 (1968), pp. 1-12

[3] F.G. Yuan; S. Yang Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear, Int. J. Fracture, Volume 69 (1994), pp. 1-26

[4] G.P. Nikishkov An algorithm and a computer program for the three-term asymp totic expansion of elastic–plastic crack tip stress and displacement fields, Engrg. Fracture Mech., Volume 50 (1995), pp. 65-83

[5] B.N. Nguyen; P.R. Onck; E. Van Der Giessen On higher-order crack-tip fields in creeping solids, Trans. ASME, Volume 67 (2000), pp. 372-382

[6] I. Jeon; S. Im The role of higher order eigenfields in elastic–plastic cracks, J. Mech. Phys. Solids, Volume 49 (2001), pp. 2789-2818

[7] C.Y. Hui; A. Ruina Why K? High order singularities and small scale yielding, Int. J. Fracture, Volume 72 (1995), pp. 97-120

[8] L. Meng; S.B. Lee Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium, Int. J. Fracture, Volume 92 (1998), pp. 55-70

[9] M. Anheuser; D. Gross Higher order fields at crack and notch tips in power-law materials under longitudinal shear, Arch. Appl. Mech., Volume 64 (1994), pp. 509-518

[10] A.H. Nayfeh Introduction to Perturbation Techniques, Willey, New York, 1981

[11] L.V. Stepanova; M.E. Phedina Asymptotic behaviour of the far stress field in the problem of crack growth in damaged medium under creep conditions, J. Appl. Mech. Techn. Phys., Volume 46 (2005), pp. 570-580

Cited by Sources:

Comments - Policy